login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228920
Number of solutions to Sum_{i=1..n} x_i^2 == 0 (mod 4) with x_i in 0..3.
9
2, 4, 8, 32, 192, 1024, 4608, 18432, 69632, 262144, 1015808, 4063232, 16515072, 67108864, 270532608, 1082130432, 4311744512, 17179869184, 68585259008, 274341036032, 1098437885952, 4398046511104, 17600775979008, 70403103916032, 281543696187392
OFFSET
1,1
FORMULA
a(n) = ((2+2i)^n + (2-2i)^n + 4^n)/4. - Charles R Greathouse IV, Sep 15 2013
G.f.: -2*x*(12*x^2-6*x+1) / ((4*x-1)*(8*x^2-4*x+1)). - Colin Barker, Nov 10 2014
MATHEMATICA
Table[((2 + 2I)^n + (2 - 2I)^n + 4^n)/4, {n, 1, 30}]
PROG
(PARI) a(n)=((2+2*I)^n+(2-2*I)^n+4^n)/4 \\ Charles R Greathouse IV, Sep 15 2013
(PARI) Vec(-2*x*(12*x^2-6*x+1)/((4*x-1)*(8*x^2-4*x+1)) + O(x^100)) \\ Colin Barker, Nov 10 2014
CROSSREFS
Column k = 0 of A330619.
Sequence in context: A298989 A074406 A186340 * A064378 A191650 A036544
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(13)-a(25) from Charles R Greathouse IV, Sep 15 2013
STATUS
approved