login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318610
a(1) = 0, a(2) = 4, a(3) = 12; for n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + 9*a(n-3).
9
0, 4, 12, 24, 72, 252, 756, 2160, 6480, 19764, 59292, 176904, 530712, 1595052, 4785156, 14346720, 43040160, 129146724, 387440172, 1162241784, 3486725352, 10460412252, 31381236756, 94143001680, 282429005040, 847289140884, 2541867422652, 7625595890664, 22876787671992
OFFSET
1,2
COMMENTS
a(n) is the number of solutions to Sum_{i=1..n} x_i^2 == 2 (mod 3).
FORMULA
a(n) = last term in M^n * [1, 0, 0]^T, where M = the 3 X 3 matrix [1, 0, 2 / 2, 1, 0 / 0, 2, 1] and T denotes transpose. [Edited by Petros Hadjicostas, Dec 19 2019]
O.g.f.: 4*x^2/((1 - 3x)*(1 + 3*x^2)).
E.g.f.: 1/3*(exp(3*x) + 2*cos(sqrt(3)*x + 2*Pi/3)).
a(n) = 3^(n/2 - 1)*((-i)^n*(-1 - sqrt(3)*i)/2 + i^n*(-1 + sqrt(3)*i)/2 + 3^(n/2)), where i is the imaginary unit.
a(n) = 3^(n/2 - 1)*(2*cos(n*Pi/2 + 2*Pi/3) + 3^(n/2)).
a(n) = 3^(n-1) + (-3)^(n/2-1) for even n and 3^(n-1) - (-3)^((n-1)/2) for odd n.
a(n) = a(n-1) + 2*A318609(n-1).
a(n) = A318609(n) for even n and 2*3^(n-1) - A318609(n) for odd n.
a(n) + A101990(n) + A318609(n) = 3^n.
EXAMPLE
a(5) = 72 since M^5 * [1, 0, 0]^T = [81, 90, 72]^T.
MATHEMATICA
LinearRecurrence[{3, -3, 9}, {0, 4, 12}, 30] (* Vincenzo Librandi, Sep 04 2018 *)
PROG
(PARI) concat([0], Vec(4*x^2/((1-3*x)*(1+3*x^2)) + O(x^40)))
(PARI) a(n) = ([1, 0, 2 ; 2, 1, 0 ; 0, 2, 1]^n*mattranspose([1, 0, 0]))[3]; \\ Michel Marcus, Dec 20 2019
(Magma) I:=[0, 4, 12]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+9*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 04 2018
CROSSREFS
A101990 gives the number of solutions to Sum_{i=1..n} x_i^2 == 0 (mod 3);
A318609 gives the number of solutions to Sum_{i=1..n} x_i^2 == 1 (mod 3).
Sequence in context: A356550 A216244 A215223 * A296358 A282512 A025543
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Sep 02 2018
STATUS
approved