The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155084 A Catalan transform of [x^n](1/(1-2x-2x^2)) (A002605). 1
 1, 2, 8, 32, 132, 552, 2328, 9872, 42020, 179336, 766888, 3284272, 14081224, 60426576, 259490736, 1114965792, 4792924356, 20611174920, 88662405768, 381494338032, 1641837542232, 7067257125744, 30425523536592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is 4^n. LINKS Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. [N. J. A. Sloane, Oct 08 2012] FORMULA G.f.: 1/(1-2x*c(x)-2(x*c(x))^2), where c(x) is the g.f. of A000108. G.f.: 1/(1-2x-4x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-..... (continued fraction). a(n) = Sum_{k=0..n} (k/(2n-k))*binomial(2n-k, n-k)*A002605(k), a(0) = 1. a(n) = Sum_{0<=k<=n} A039599(n,k)*A108411(k). [Philippe Deléham, Nov 15 2009] Apparently 3*n*a(n) +6*(3-4*n)*a(n-1) +4*(11*n-18)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 25 2012 CROSSREFS Cf. A000108, A002605, A101850, A039599, A108411. Sequence in context: A183895 A228921 A150829 * A322251 A150830 A150831 Adjacent sequences:  A155081 A155082 A155083 * A155085 A155086 A155087 KEYWORD easy,nonn AUTHOR Paul Barry, Jan 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)