

A293777


Number of centrally symmetric diagonal Latin squares of order n with constant first row.


1




OFFSET

1,4


COMMENTS

Centrally symmetric diagonal Latin square is a square with onetoone correspondence between elements within all pairs a[i][j] and a[n1i][n1j] (numbering of rows and columns from 0 to n1).
It seems that a(n)=0 for n=2 and n=3 (diagonal Latin squares of these sizes don't exist) and for n=2 (mod 4).


LINKS

Table of n, a(n) for n=1..9.
E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, Properties of central symmetry for diagonal Latin squares, Highperformance computing systems and technologies, No. 1 (8), 2018, pp. 7478. (in Russian)
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, V. S. Titov, Central Symmetry Properties for Diagonal Latin Squares, Problems of Information Technology, No. 2, 2019, pp. 38. doi: 10.25045/jpit.v10.i2.01.
Index entries for sequences related to Latin squares and rectangles


FORMULA

a(n) = A293778(n) / n!.


EXAMPLE

0 1 2 3 4 5 6 7 8
6 3 0 2 7 8 1 4 5
3 2 1 8 6 7 0 5 4
7 8 6 5 1 3 4 0 2
8 6 4 7 2 0 5 3 1
2 7 5 6 8 4 3 1 0
5 4 7 0 3 1 8 2 6
4 5 8 1 0 2 7 6 3
1 0 3 4 5 6 2 8 7


CROSSREFS

Cf. A287649, A287650, A293778.
Sequence in context: A160636 A282626 A206712 * A200704 A257955 A024544
Adjacent sequences: A293774 A293775 A293776 * A293778 A293779 A293780


KEYWORD

nonn,more,changed


AUTHOR

Eduard I. Vatutin, Oct 16 2017


STATUS

approved



