OFFSET
1,1
COMMENTS
The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/Pi, Mathematics of Computation (AMS), 2015.
EXAMPLE
2.8112975146708616421227908037104816935281655223291765...
MAPLE
evalf(GAMMA(1/Pi), 117);
MATHEMATICA
RealDigits[Gamma[1/Pi], 10, 117][[1]]
PROG
(PARI) default(realprecision, 117); gamma(1/Pi)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Iaroslav V. Blagouchine, May 14 2015
STATUS
approved