OFFSET
2,1
COMMENTS
In the article by Vidunas, the third formula on page 13 is wrong. The exponent of the term K((sqrt(3)-1)/(2*sqrt(2)))^(1/3) is wrong. It should be Gamma(1/24) = Pi^(1/24) * 2^(89/36) * 3^(25/48) * sqrt(1+sqrt(2)) * (sqrt(3)-1)^(1/4) * K(1/sqrt(2))^(1/4) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/6) * K((2-sqrt(3))*(sqrt(3)-sqrt(2)))^(1/2). - Vaclav Kotesovec, Apr 21 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..5002
R. Vidunas, Expressions for values of the Gamma function, arxiv:math/0403510 [math.CA], 2004.
FORMULA
From Vaclav Kotesovec, Apr 21 2024: (Start)
Equals 2^(13/12) * 3^(9/16) * Pi^(1/4) * (sqrt(3) - 1)^(1/4) * sqrt((1 + sqrt(2)) * Gamma(1/3) * Gamma(1/4)) * EllipticTheta(3, 0, exp(-Pi*sqrt(6))).
Equals 2^(35/24) * 3^(3/8) * sqrt(Pi*(1 + sqrt(2)) * Gamma(1/12) / (1 + sqrt(3))) * EllipticTheta(3, 0, exp(-Pi*sqrt(6))). (End)
EXAMPLE
23.462487693183319881385711469586294930433365134004610164739...
MAPLE
evalf(GAMMA(1/24), 110); # Vaclav Kotesovec, Apr 21 2024
evalf(Pi^(1/24) * 2^(89/36) * 3^(25/48) * sqrt(1+sqrt(2)) * (sqrt(3)-1)^(1/4) * EllipticK(1/sqrt(2))^(1/4) * EllipticK((sqrt(3)-1)/(2*sqrt(2)))^(1/6) * EllipticK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^(1/2), 110); # Vaclav Kotesovec, Apr 21 2024
MATHEMATICA
RealDigits[Gamma[1/24], 10, 100][[1]] (* G. C. Greubel, Mar 10 2018 *)
PROG
(PARI) default(realprecision, 100); gamma(1/24) \\ G. C. Greubel, Mar 10 2018
(Magma) SetDefaultRealField(RealField(100)); Gamma(1/24); // G. C. Greubel, Mar 10 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Dec 29 2011
STATUS
approved