login
A257957
Decimal expansion of log(Gamma(1/Pi)).
10
1, 0, 3, 3, 6, 4, 6, 1, 2, 5, 7, 6, 5, 5, 8, 2, 7, 0, 6, 4, 8, 5, 5, 3, 7, 4, 5, 5, 3, 3, 1, 6, 1, 7, 8, 6, 6, 7, 1, 0, 0, 3, 0, 8, 7, 0, 1, 5, 9, 5, 9, 8, 8, 6, 0, 4, 4, 8, 2, 1, 8, 5, 7, 5, 2, 9, 5, 1, 1, 3, 1, 2, 7, 1, 4, 7, 9, 4, 5, 4, 4, 8, 1, 4, 7, 9, 6, 9, 8, 4, 1, 8, 5, 8, 0, 5, 3, 8, 5, 5, 1, 6, 8
OFFSET
1,3
COMMENTS
The reference gives an interesting series representation with rational coefficients for log(Gamma(1/Pi)) = (1-1/Pi)*log(Pi) - 1/Pi + log(2)/2 + (1 + 1/4 + 1/12 + 1/32 + 1/75 + 1/144 + 13/2880 + 157/46080 + ...)/(2*Pi).
The value log(Gamma(1/Pi)) is also intimately related to integral_{x=0..1} arctan(arctanh(x))/x (A257963).
EXAMPLE
1.0336461257655827064855374553316178667100308701595988...
MAPLE
evalf(log(GAMMA(1/Pi)), 120);
MATHEMATICA
RealDigits[Log[Gamma[1/Pi]], 10, 120][[1]]
PROG
(PARI) default(realprecision, 120); log(gamma(1/Pi))
KEYWORD
nonn,cons
AUTHOR
STATUS
approved