OFFSET
1,3
COMMENTS
The reference gives an interesting series representation with rational coefficients for log(Gamma(1/Pi)) = (1-1/Pi)*log(Pi) - 1/Pi + log(2)/2 + (1 + 1/4 + 1/12 + 1/32 + 1/75 + 1/144 + 13/2880 + 157/46080 + ...)/(2*Pi).
The value log(Gamma(1/Pi)) is also intimately related to integral_{x=0..1} arctan(arctanh(x))/x (A257963).
LINKS
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/Pi, Mathematics of Computation (AMS), 2015.
EXAMPLE
1.0336461257655827064855374553316178667100308701595988...
MAPLE
evalf(log(GAMMA(1/Pi)), 120);
MATHEMATICA
RealDigits[Log[Gamma[1/Pi]], 10, 120][[1]]
PROG
(PARI) default(realprecision, 120); log(gamma(1/Pi))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Iaroslav V. Blagouchine, May 14 2015
STATUS
approved