

A257960


Decimal expansion of Sum_{n=3..infinity} (1)^n/log(log(log(n))).


6



2, 7, 7, 8, 6, 7, 4, 9, 8, 9, 6, 8, 4, 5, 6, 8, 1, 7, 2, 3, 0, 6, 4, 4, 9, 9, 4, 5, 7, 9, 0, 3, 1, 0, 1, 4, 9, 0, 6, 9, 3, 6, 4, 2, 1, 1, 4, 6, 6, 7, 6, 5, 8, 8, 8, 3, 9, 1, 0, 1, 9, 3, 3, 2, 5, 5, 1, 9, 0, 2, 7, 1, 3, 7, 0, 9, 9, 9, 2, 5, 5, 5, 0, 1, 2, 2, 7, 6, 9, 6, 8, 8, 3, 0, 9, 6, 8, 3, 3, 0, 6, 8, 4, 7, 6, 3, 0, 8, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

An extremely slowly convergent series, converging in virtue of Leibniz's rule.


LINKS

Table of n, a(n) for n=3..111.
Eric Weisstein's World of Mathematics, Leibniz Criterion
Wikipedia, Alternating series test


EXAMPLE

277.8674989684568172306449945790310149069364211466765...


MAPLE

evalf(sum((1)^n/log(log(log(n))), n = 3..infinity), 120); (* Maple 12.0 computes this expression with no problems, but later versions of Maple may have some problems with it *)


MATHEMATICA

N[NSum[(1)^n/Log[Log[Log[n]]], {n, 3, Infinity}, AccuracyGoal > 500, Method > "AlternatingSigns", WorkingPrecision > 1000], 119] (* Mathematica needs higher precision than usual to compute this series *)


PROG

(PARI) default(realprecision, 200); precision(sumalt(n=3, (1)^n/log(log(log(n)))), 120) /* PARI needs higher precision than usual to compute this series */


CROSSREFS

Cf. A099769, A257837, A257812, A257898.
Sequence in context: A021040 A246553 A330479 * A238734 A332633 A316352
Adjacent sequences: A257957 A257958 A257959 * A257961 A257962 A257963


KEYWORD

nonn,cons


AUTHOR

Iaroslav V. Blagouchine, May 14 2015


STATUS

approved



