OFFSET
0,5
COMMENTS
This sequence divides into blocks of length F(n), n = 1, 2, 3, 4, 5, ... (so F(n) = 1, 2, 3, 5, 8, ...)
LINKS
Peter G. Anderson, Table of n, a(n) for n = 0..317808
EXAMPLE
This is an irregular array, the first few rows of which are:
0;
0, 1;
0, 2, 1;
0, 3, 2, 1, 4;
0, 5, 3, 2, 7, 1, 6, 4;
0, 8, 5, 3, 11, 2, 10, 7, 1, 9, 6, 4, 12;
0, 13, 8, 5, 18, 3, 16, 11, 2, 15, 10, 7, 20, 1, 14, 9, 6, 19, 4, 17, 12;
PROG
(J)
The function ztab in the j language computes a table of Zeckendorf representations for the integers [0, F(n+2))
ztab =: 3 : 0
if. y = 1 do. 2 1 $ 0 1
elseif. y = 2 do. 3 2 $ 0 0 0 1 1 0
elseif. do. (0 , "1 ztab y-1), (1 0 , "1 ztab y-2)
end.
)
ztab 5
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 0 1
Then forming the inner product with the Fibonacci numbers reversed (i.e., evaluating in the Fibonacci radix backwards) give the permutation:
1 2 3 5 8 +/ . * "1 ztab 5
0 8 5 3 11 2 10 7 1 9 6 4 12
CROSSREFS
KEYWORD
nonn,tabf,base
AUTHOR
Peter G. Anderson, May 14 2015
STATUS
approved