%I
%S 0,0,1,0,2,1,0,3,2,1,4,0,5,3,2,7,1,6,4,0,8,5,3,11,2,10,7,1,9,6,4,12,0,
%T 13,8,5,18,3,16,11,2,15,10,7,20,1,14,9,6,19,4,17,12,0,21,13,8,29,5,26,
%U 18,3,24,16,11,32,2,23,15,10,31,7,28,20,1,22,14
%N List of successive permutations of the numbers [0,F(n)) achieved by writing the numbers in the Fibonacci/Zeckendorf radix in the form of an (n2)bit string, reversing that string, and extracting the numerical value according to Fibonacci/Zeckendorf radix.
%C This sequence divides into blocks of length F(n), n = 1, 2, 3, 4, 5, ... (so F(n) = 1, 2, 3, 5, 8, ...)
%H Peter G. Anderson, <a href="/A257962/b257962.txt">Table of n, a(n) for n = 0..317808</a>
%e This is an irregular array, the first few rows of which are:
%e 0;
%e 0, 1;
%e 0, 2, 1;
%e 0, 3, 2, 1, 4;
%e 0, 5, 3, 2, 7, 1, 6, 4;
%e 0, 8, 5, 3, 11, 2, 10, 7, 1, 9, 6, 4, 12;
%e 0, 13, 8, 5, 18, 3, 16, 11, 2, 15, 10, 7, 20, 1, 14, 9, 6, 19, 4, 17, 12;
%o (J)
%o The function ztab in the j language computes a table of Zeckendorf representations for the integers [0,F(n+2))
%o ztab =: 3 : 0
%o if. y = 1 do. 2 1 $ 0 1
%o elseif. y = 2 do. 3 2 $ 0 0 0 1 1 0
%o elseif. do. (0 ,"1 ztab y1), (1 0 ,"1 ztab y2)
%o end.
%o )
%o ztab 5
%o 0 0 0 0 0
%o 0 0 0 0 1
%o 0 0 0 1 0
%o 0 0 1 0 0
%o 0 0 1 0 1
%o 0 1 0 0 0
%o 0 1 0 0 1
%o 0 1 0 1 0
%o 1 0 0 0 0
%o 1 0 0 0 1
%o 1 0 0 1 0
%o 1 0 1 0 0
%o 1 0 1 0 1
%o Then forming the inner product with the Fibonacci numbers reversed (i.e., evaluating in the Fibonacci radix backwards) give the permutation:
%o 1 2 3 5 8 +/ . * "1 ztab 5
%o 0 8 5 3 11 2 10 7 1 9 6 4 12
%Y Cf. A014417, A257691.
%K nonn,tabf,base
%O 0,5
%A _Peter G. Anderson_, May 14 2015
