login
A260672
Table read by rows: T(n,k) = n - A001318(k), k = 0 .. A193832(n)-1.
6
0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 3, 2, 5, 4, 3, 0, 6, 5, 4, 1, 7, 6, 5, 2, 0, 8, 7, 6, 3, 1, 9, 8, 7, 4, 2, 10, 9, 8, 5, 3, 11, 10, 9, 6, 4, 12, 11, 10, 7, 5, 0, 13, 12, 11, 8, 6, 1, 14, 13, 12, 9, 7, 2, 15, 14, 13, 10, 8, 3, 0, 16, 15, 14, 11, 9, 4, 1, 17, 16
OFFSET
0,4
COMMENTS
Column k starts at row A001318(k); each column = A001477.
LINKS
Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
FORMULA
Number of m-tuples of partitions of n that have no part in common = Sum(A087960(k)*A000041(T(n,k))^m: k = 0 .. A193832(n+1)-1), e.g. A054440 (m=2) and A260664 (m=3); see Wilf link: p. 2, (3).
EXAMPLE
. 0: 0
. 1: 1 0
. 2: 2 1 0
. 3: 3 2 1
. 4: 4 3 2
. 5: 5 4 3 0
. 6: 6 5 4 1
. 7: 7 6 5 2 0
. 8: 8 7 6 3 1
. 9: 9 8 7 4 2
. 10: 10 9 8 5 3
. 11: 11 10 9 6 4
. 12: 12 11 10 7 5 0
. 13: 13 12 11 8 6 1
. 14: 14 13 12 9 7 2
. 15: 15 14 13 10 8 3 0
. 16: 16 15 14 11 9 4 1
. 17: 17 16 15 12 10 5 2
. 18: 18 17 16 13 11 6 3
. 19: 19 18 17 14 12 7 4
. 20: 20 19 18 15 13 8 5 .
PROG
(Haskell)
a260672 n k = a260672_tabf !! n !! k
a260672_row n = a260672_tabf !! n
a260672_tabf = map (takeWhile (>= 0) . flip map a001318_list . (-)) [0..]
CROSSREFS
Cf. A001318, A193832 (row lengths), A000041, A087960, A054440, A260664, A260706 (row sums).
Sequence in context: A257962 A176095 A295508 * A063942 A263405 A106384
KEYWORD
nonn,tabf,look
AUTHOR
Reinhard Zumkeller, Nov 15 2015
STATUS
approved