login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260672
Table read by rows: T(n,k) = n - A001318(k), k = 0 .. A193832(n)-1.
6
0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 3, 2, 5, 4, 3, 0, 6, 5, 4, 1, 7, 6, 5, 2, 0, 8, 7, 6, 3, 1, 9, 8, 7, 4, 2, 10, 9, 8, 5, 3, 11, 10, 9, 6, 4, 12, 11, 10, 7, 5, 0, 13, 12, 11, 8, 6, 1, 14, 13, 12, 9, 7, 2, 15, 14, 13, 10, 8, 3, 0, 16, 15, 14, 11, 9, 4, 1, 17, 16
OFFSET
0,4
COMMENTS
Column k starts at row A001318(k); each column = A001477.
LINKS
Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
FORMULA
Number of m-tuples of partitions of n that have no part in common = Sum(A087960(k)*A000041(T(n,k))^m: k = 0 .. A193832(n+1)-1), e.g. A054440 (m=2) and A260664 (m=3); see Wilf link: p. 2, (3).
EXAMPLE
. 0: 0
. 1: 1 0
. 2: 2 1 0
. 3: 3 2 1
. 4: 4 3 2
. 5: 5 4 3 0
. 6: 6 5 4 1
. 7: 7 6 5 2 0
. 8: 8 7 6 3 1
. 9: 9 8 7 4 2
. 10: 10 9 8 5 3
. 11: 11 10 9 6 4
. 12: 12 11 10 7 5 0
. 13: 13 12 11 8 6 1
. 14: 14 13 12 9 7 2
. 15: 15 14 13 10 8 3 0
. 16: 16 15 14 11 9 4 1
. 17: 17 16 15 12 10 5 2
. 18: 18 17 16 13 11 6 3
. 19: 19 18 17 14 12 7 4
. 20: 20 19 18 15 13 8 5 .
PROG
(Haskell)
a260672 n k = a260672_tabf !! n !! k
a260672_row n = a260672_tabf !! n
a260672_tabf = map (takeWhile (>= 0) . flip map a001318_list . (-)) [0..]
CROSSREFS
Cf. A001318, A193832 (row lengths), A000041, A087960, A054440, A260664, A260706 (row sums).
Sequence in context: A257962 A176095 A295508 * A063942 A263405 A106384
KEYWORD
nonn,tabf,look
AUTHOR
Reinhard Zumkeller, Nov 15 2015
STATUS
approved