login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260675 Expansion of psi(x^2) * phi(x^15) in powers of x where phi(), psi() are Ramanujan theta functions. 2
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,16

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/4) * eta(q^4)^2 * eta(q^30)^5 / (eta(q^2) * eta(q^15)^2 * eta(q^60)^2) in powers of q.

Euler transform of a period 60 sequence.

2 * a(n) = A260671(4*n + 1).

EXAMPLE

G.f. = 1 + x^2 + x^6 + x^12 + 2*x^15 + 2*x^17 + x^20 + 2*x^21 + 2*x^27 + ...

G.f. = q + q^9 + q^25 + q^49 + 2*q^61 + 2*q^69 + q^81 + 2*q^85 + 2*q^109 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (1/2) x^(-1/4) EllipticTheta[ 2, 0, x] EllipticTheta[ 3, 0, x^15], {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^30 + A)^5 / (eta(x^2 + A) * eta(x^15 + A)^2 * eta(x^60 + A)^2), n))};

CROSSREFS

Cf. A260671.

Sequence in context: A254886 A030219 A287345 * A035147 A101673 A091395

Adjacent sequences:  A260672 A260673 A260674 * A260676 A260677 A260678

KEYWORD

nonn

AUTHOR

Michael Somos, Nov 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 06:02 EDT 2021. Contains 342935 sequences. (Running on oeis4.)