OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-15/4) * eta(q^2)^5 * eta(q^60)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^30)) in powers of q.
Euler transform of a period 60 sequence.
2 * a(n) = A260671(4*n + 15).
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + x^30 + 2*x^31 + 2*x^34 + ...
G.f. = q^15 + 2*q^19 + 2*q^31 + 2*q^51 + 2*q^79 + 2*q^115 + q^135 + 2*q^139 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, x] QPochhammer[x^60]^2 / QPochhammer[x^30], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^60 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^30 + A)), n))};
(Magma)
m:=130;
f:= func< q | (&*[( (1-q^(2*n))^5*(1-q^(60*n))^2 )/( (1-q^n)^2*(1-q^(4*n))^2*(1-q^(30*n)) ): n in [1..m+1]]) >;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( f(x) )); // G. C. Greubel, Feb 02 2023
(SageMath)
m = 130
def f(q): return product( ((1-q^(2*n))^5*(1-q^(60*n))^2)/((1-q^n)^2*(1-q^(4*n))^2*(1-q^(30*n))) for n in range(1, m+2))
def A260676_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A260676_list(m) # G. C. Greubel, Feb 02 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 14 2015
STATUS
approved