login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260671
Expansion of theta_3(q) * theta_3(q^15) in powers of q.
5
1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 10, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0
OFFSET
0,2
COMMENTS
a(n) is the number of solutions in integers (x, y) of x^2 + 15*y^2 = n. - Michael Somos, Jul 17 2018
LINKS
FORMULA
Expansion of (eta(q^2) * eta(q^30))^5 / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60))^2 in powers of q.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = 60^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (Sum_{k in Z} x^(k^2)) * (Sum_{k in Z} x^(15*k^2)).
a(3*n + 2) = a(4*n + 2) = a(5*n + 2) = a(5*n + 3) = 0.
a(4*n) = A028625(n). a(4*n + 1) = 2 * A260675(n). a(4*n + 3) = 2 * A260676(n).
a(5*n) = A192323(n).
a(n) = A122855(n) + A140727(n).
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^15 + 6*x^16 + 4*x^19 + 4*x^24 + 2*x^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^15], {q, 0, n}];
PROG
(PARI) {a(n) = if( n<1, n==0, qfrep([1, 0; 0, 15], n)[n]*2)};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^30 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A))^2, n))};
(PARI) q='q+O('q^99); Vec((eta(q^2)*eta(q^30))^5/(eta(q)*eta(q^4)*eta(q^15)*eta(q^60))^2) \\ Altug Alkan, Jul 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 14 2015
STATUS
approved