OFFSET
0,4
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
FORMULA
a(n) = A054440(n) / 2 for n >= 1.
EXAMPLE
n = 6 has A000041(6) = 11 partitions: [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1]; the following table shows the number of common parts of the pairs of these partitions, e.g. row i, col f: number of common parts of [2,2,1,1] and [3,2,1] = 2:
. -------------------+---+---+---+---+---+---+---+---+---+---+---+
. | a | b | c | d | e | f | g | h | i | j | k |
. ---+---------------+---+---+---+---+---+---+---+---+---+---+---+
. a | [6] | 1 |
. b | [5,1] | 0 2 |
. c | [4,2] | 0 0 2 |
. d | [4,1,1] | 0 1 1 3 |
. e | [3,3] | 0 0 0 0 2 |
. f | [3,2,1] | 0 1 1 1 1 3 |
. g | [3,1,1,1] | 0 1 0 2 1 2 4 |
. h | [2,2,2] | 0 0 1 0 0 1 0 3 |
. i | [2,2,1,1] | 0 1 1 2 0 2 2 2 4 |
. j | [2,1,1,1,1] | 0 1 1 2 0 2 3 1 3 5 |
. k | [1,1,1,1,1,1] | 0 1 0 2 0 1 3 0 2 4 6 |
. ---+---------------+---+---+---+---+---+---+---+---+---+---+---+
The table contains 24 zeros, therefore a(6) = 24.
PROG
(Haskell)
a260669 = flip div 2 . a054440
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 15 2015
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Feb 07 2024
STATUS
approved