login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260669
Number of unordered pairs of partitions of n with no common parts.
10
1, 0, 1, 2, 6, 8, 24, 30, 74, 110, 219, 309, 651, 870, 1608, 2394, 4085, 5756, 9931, 13785, 22724, 32300, 50404, 70862, 111540, 153756, 232868, 326259, 484090, 667015, 986082, 1345566, 1951216, 2673588, 3805742, 5179213, 7348514, 9895254, 13845750, 18681896
OFFSET
0,4
LINKS
FORMULA
a(n) = A054440(n) / 2 for n >= 1.
EXAMPLE
n = 6 has A000041(6) = 11 partitions: [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1]; the following table shows the number of common parts of the pairs of these partitions, e.g. row i, col f: number of common parts of [2,2,1,1] and [3,2,1] = 2:
. -------------------+---+---+---+---+---+---+---+---+---+---+---+
. | a | b | c | d | e | f | g | h | i | j | k |
. ---+---------------+---+---+---+---+---+---+---+---+---+---+---+
. a | [6] | 1 |
. b | [5,1] | 0 2 |
. c | [4,2] | 0 0 2 |
. d | [4,1,1] | 0 1 1 3 |
. e | [3,3] | 0 0 0 0 2 |
. f | [3,2,1] | 0 1 1 1 1 3 |
. g | [3,1,1,1] | 0 1 0 2 1 2 4 |
. h | [2,2,2] | 0 0 1 0 0 1 0 3 |
. i | [2,2,1,1] | 0 1 1 2 0 2 2 2 4 |
. j | [2,1,1,1,1] | 0 1 1 2 0 2 3 1 3 5 |
. k | [1,1,1,1,1,1] | 0 1 0 2 0 1 3 0 2 4 6 |
. ---+---------------+---+---+---+---+---+---+---+---+---+---+---+
The table contains 24 zeros, therefore a(6) = 24.
PROG
(Haskell)
a260669 = flip div 2 . a054440
CROSSREFS
Sequence in context: A081957 A334901 A279732 * A122758 A122756 A193946
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 15 2015
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Feb 07 2024
STATUS
approved