OFFSET
0,3
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
Wikipedia, Pentagonal number theorem
FORMULA
G.f.: Sum[p(n)^2*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n)) / (64 * 2^(1/4) * n^(7/4)). - Vaclav Kotesovec, May 20 2018
EXAMPLE
a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
MAPLE
with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d, `, coeff(s, x, i)) od:
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
PROG
(Haskell)
a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
-- Reinhard Zumkeller, Nov 15 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Herbert S. Wilf, May 13 2000
EXTENSIONS
Corrected and extended by James A. Sellers, May 23 2000
STATUS
approved