login
A284592
Square array read by antidiagonals: T(n,k) is the number of pairs of partitions of n and k respectively, such that the pair of partitions have no part in common.
4
1, 1, 1, 2, 0, 2, 3, 1, 1, 3, 5, 1, 2, 1, 5, 7, 2, 3, 3, 2, 7, 11, 2, 5, 4, 5, 2, 11, 15, 4, 6, 7, 7, 6, 4, 15, 22, 4, 10, 8, 12, 8, 10, 4, 22, 30, 7, 12, 14, 14, 14, 14, 12, 7, 30, 42, 8, 18, 16, 24, 16, 24, 16, 18, 8, 42, 56, 12, 23, 25, 28, 28, 28, 28, 25, 23, 12, 56
OFFSET
0,4
COMMENTS
Compare with A284593.
FORMULA
O.g.f. Product_{j >= 1} (1 + x^j/(1 - x^j) + y^j/(1 - y^j)) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7).
Antidiagonal sums are A015128.
EXAMPLE
Square array begins
n\k| 0 1 2 3 4 5 6 7 8 9 10
- - - - - - - - - - - - - - - - - - - - - - -
0 | 1 1 2 3 5 7 11 15 22 30 42: A000041
1 | 1 0 1 1 2 2 4 4 7 8 12: A002865
2 | 2 1 2 3 5 6 10 12 18 23 32
3 | 3 1 3 4 7 8 14 16 25 31 44
4 | 5 2 5 7 12 14 24 28 43 54 76
5 | 7 2 6 8 14 16 28 31 49 60 85
6 | 11 4 10 14 24 28 48 55 85 106 149
7 | 15 4 12 16 28 31 55 60 95 115 163
8 | 22 7 18 25 43 49 85 95 148 182 256
9 | 30 8 23 31 54 60 106 115 182 220 311
10 | 42 12 32 44 76 85 149 163 256 311 438
...
T(4,3) = 7: the 7 pairs of partitions of 4 and 3 with no parts in common are (4, 3), (4, 2 + 1), (4, 1 + 1 + 1), (2 + 2, 3), (2 + 2, 1 + 1 + 1), (2 + 1 + 1 , 3) and (1 + 1 + 1 + 1, 3).
MAPLE
#A284592 as a square array
ser := taylor(taylor(mul(1 + x^j/(1 - x^j) + y^j/(1 - y^j), j = 1..10), x, 11), y, 11):
convert(ser, polynom):
s := convert(%, polynom):
with(PolynomialTools):
for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do;
# second Maple program:
b:= proc(n, k, i) option remember; `if`(n=0 and
(k=0 or i=1), 1, `if`(i<1, 0, b(n, k, i-1)+
add(b(sort([n-i*j, k])[], i-1), j=1..n/i)+
add(b(sort([n, k-i*j])[], i-1), j=1..k/i)))
end:
A:= (n, k)-> (l-> b(l[1], l[2]$2))(sort([n, k])):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Apr 02 2017
MATHEMATICA
Table[Total@ Boole@ Map[! IntersectingQ @@ Map[Union, #] &, Tuples@ {IntegerPartitions@ #, IntegerPartitions@ k}] &[n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 02 2017 *)
b[n_, k_, i_] := b[n, k, i] = If[n == 0 &&
(k == 0 || i == 1), 1, If[i < 1, 0, b[n, k, i - 1] +
Sum[b[Sequence @@ Sort[{n - i*j, k}], i - 1], {j, 1, n/i}] +
Sum[b[Sequence @@ Sort[{n, k - i*j}], i - 1], {j, 1, k/i}]]];
A[n_, k_] := Function [l, b[l[[1]], l[[2]], l[[2]]]][Sort[{n, k}]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A000041 (row 0), A002865 (row 1), A015128 (antidiagonal sums), A284593.
Main diagonal gives A054440 or 2*A260669 (for n>0).
Sequence in context: A330237 A231154 A073450 * A071447 A063514 A082490
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Mar 30 2017
STATUS
approved