login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284592
Square array read by antidiagonals: T(n,k) is the number of pairs of partitions of n and k respectively, such that the pair of partitions have no part in common.
4
1, 1, 1, 2, 0, 2, 3, 1, 1, 3, 5, 1, 2, 1, 5, 7, 2, 3, 3, 2, 7, 11, 2, 5, 4, 5, 2, 11, 15, 4, 6, 7, 7, 6, 4, 15, 22, 4, 10, 8, 12, 8, 10, 4, 22, 30, 7, 12, 14, 14, 14, 14, 12, 7, 30, 42, 8, 18, 16, 24, 16, 24, 16, 18, 8, 42, 56, 12, 23, 25, 28, 28, 28, 28, 25, 23, 12, 56
OFFSET
0,4
COMMENTS
Compare with A284593.
FORMULA
O.g.f. Product_{j >= 1} (1 + x^j/(1 - x^j) + y^j/(1 - y^j)) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7).
Antidiagonal sums are A015128.
EXAMPLE
Square array begins
n\k| 0 1 2 3 4 5 6 7 8 9 10
- - - - - - - - - - - - - - - - - - - - - - -
0 | 1 1 2 3 5 7 11 15 22 30 42: A000041
1 | 1 0 1 1 2 2 4 4 7 8 12: A002865
2 | 2 1 2 3 5 6 10 12 18 23 32
3 | 3 1 3 4 7 8 14 16 25 31 44
4 | 5 2 5 7 12 14 24 28 43 54 76
5 | 7 2 6 8 14 16 28 31 49 60 85
6 | 11 4 10 14 24 28 48 55 85 106 149
7 | 15 4 12 16 28 31 55 60 95 115 163
8 | 22 7 18 25 43 49 85 95 148 182 256
9 | 30 8 23 31 54 60 106 115 182 220 311
10 | 42 12 32 44 76 85 149 163 256 311 438
...
T(4,3) = 7: the 7 pairs of partitions of 4 and 3 with no parts in common are (4, 3), (4, 2 + 1), (4, 1 + 1 + 1), (2 + 2, 3), (2 + 2, 1 + 1 + 1), (2 + 1 + 1 , 3) and (1 + 1 + 1 + 1, 3).
MAPLE
#A284592 as a square array
ser := taylor(taylor(mul(1 + x^j/(1 - x^j) + y^j/(1 - y^j), j = 1..10), x, 11), y, 11):
convert(ser, polynom):
s := convert(%, polynom):
with(PolynomialTools):
for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do;
# second Maple program:
b:= proc(n, k, i) option remember; `if`(n=0 and
(k=0 or i=1), 1, `if`(i<1, 0, b(n, k, i-1)+
add(b(sort([n-i*j, k])[], i-1), j=1..n/i)+
add(b(sort([n, k-i*j])[], i-1), j=1..k/i)))
end:
A:= (n, k)-> (l-> b(l[1], l[2]$2))(sort([n, k])):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Apr 02 2017
MATHEMATICA
Table[Total@ Boole@ Map[! IntersectingQ @@ Map[Union, #] &, Tuples@ {IntegerPartitions@ #, IntegerPartitions@ k}] &[n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 02 2017 *)
b[n_, k_, i_] := b[n, k, i] = If[n == 0 &&
(k == 0 || i == 1), 1, If[i < 1, 0, b[n, k, i - 1] +
Sum[b[Sequence @@ Sort[{n - i*j, k}], i - 1], {j, 1, n/i}] +
Sum[b[Sequence @@ Sort[{n, k - i*j}], i - 1], {j, 1, k/i}]]];
A[n_, k_] := Function [l, b[l[[1]], l[[2]], l[[2]]]][Sort[{n, k}]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A000041 (row 0), A002865 (row 1), A015128 (antidiagonal sums), A284593.
Main diagonal gives A054440 or 2*A260669 (for n>0).
Sequence in context: A330237 A231154 A073450 * A071447 A063514 A082490
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Mar 30 2017
STATUS
approved