login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by antidiagonals: T(n,k) is the number of pairs of partitions of n and k respectively, such that the pair of partitions have no part in common.
4

%I #30 Jun 10 2021 07:41:36

%S 1,1,1,2,0,2,3,1,1,3,5,1,2,1,5,7,2,3,3,2,7,11,2,5,4,5,2,11,15,4,6,7,7,

%T 6,4,15,22,4,10,8,12,8,10,4,22,30,7,12,14,14,14,14,12,7,30,42,8,18,16,

%U 24,16,24,16,18,8,42,56,12,23,25,28,28,28,28,25,23,12,56

%N Square array read by antidiagonals: T(n,k) is the number of pairs of partitions of n and k respectively, such that the pair of partitions have no part in common.

%C Compare with A284593.

%H Alois P. Heinz, <a href="/A284592/b284592.txt">Antidiagonals n = 0..200, flattened</a>

%H H. S. Wilf, <a href="https://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf">Lectures on Integer Partitions</a>

%F O.g.f. Product_{j >= 1} (1 + x^j/(1 - x^j) + y^j/(1 - y^j)) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7).

%F Antidiagonal sums are A015128.

%e Square array begins

%e n\k| 0 1 2 3 4 5 6 7 8 9 10

%e - - - - - - - - - - - - - - - - - - - - - - -

%e 0 | 1 1 2 3 5 7 11 15 22 30 42: A000041

%e 1 | 1 0 1 1 2 2 4 4 7 8 12: A002865

%e 2 | 2 1 2 3 5 6 10 12 18 23 32

%e 3 | 3 1 3 4 7 8 14 16 25 31 44

%e 4 | 5 2 5 7 12 14 24 28 43 54 76

%e 5 | 7 2 6 8 14 16 28 31 49 60 85

%e 6 | 11 4 10 14 24 28 48 55 85 106 149

%e 7 | 15 4 12 16 28 31 55 60 95 115 163

%e 8 | 22 7 18 25 43 49 85 95 148 182 256

%e 9 | 30 8 23 31 54 60 106 115 182 220 311

%e 10 | 42 12 32 44 76 85 149 163 256 311 438

%e ...

%e T(4,3) = 7: the 7 pairs of partitions of 4 and 3 with no parts in common are (4, 3), (4, 2 + 1), (4, 1 + 1 + 1), (2 + 2, 3), (2 + 2, 1 + 1 + 1), (2 + 1 + 1 , 3) and (1 + 1 + 1 + 1, 3).

%p #A284592 as a square array

%p ser := taylor(taylor(mul(1 + x^j/(1 - x^j) + y^j/(1 - y^j), j = 1..10), x, 11), y, 11):

%p convert(ser, polynom):

%p s := convert(%, polynom):

%p with(PolynomialTools):

%p for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do;

%p # second Maple program:

%p b:= proc(n, k, i) option remember; `if`(n=0 and

%p (k=0 or i=1), 1, `if`(i<1, 0, b(n, k, i-1)+

%p add(b(sort([n-i*j, k])[], i-1), j=1..n/i)+

%p add(b(sort([n, k-i*j])[], i-1), j=1..k/i)))

%p end:

%p A:= (n, k)-> (l-> b(l[1], l[2]$2))(sort([n, k])):

%p seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Apr 02 2017

%t Table[Total@ Boole@ Map[! IntersectingQ @@ Map[Union, #] &, Tuples@ {IntegerPartitions@ #, IntegerPartitions@ k}] &[n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 02 2017 *)

%t b[n_, k_, i_] := b[n, k, i] = If[n == 0 &&

%t (k == 0 || i == 1), 1, If[i < 1, 0, b[n, k, i - 1] +

%t Sum[b[Sequence @@ Sort[{n - i*j, k}], i - 1], {j, 1, n/i}] +

%t Sum[b[Sequence @@ Sort[{n, k - i*j}], i - 1], {j, 1, k/i}]]];

%t A[n_, k_] := Function [l, b[l[[1]], l[[2]], l[[2]]]][Sort[{n, k}]];

%t Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 07 2021, after _Alois P. Heinz_ *)

%Y Cf. A000041 (row 0), A002865 (row 1), A015128 (antidiagonal sums), A284593.

%Y Main diagonal gives A054440 or 2*A260669 (for n>0).

%K nonn,tabl,easy

%O 0,4

%A _Peter Bala_, Mar 30 2017