login
A054443
Third convolution of A001405 (central binomial numbers).
1
1, 4, 14, 40, 109, 276, 682, 1624, 3810, 8744, 19868, 44496, 98941, 217780, 476786, 1036024, 2241814, 4823160, 10342180, 22076080, 46994386, 99673224, 210923364, 445000560, 937051684, 1968204496, 4127285688, 8636324768, 18045851165, 37638105588, 78404375362
OFFSET
0,2
LINKS
FORMULA
a(2*k) = (2*k+7)*4^(k+1)-binomial(2*(k+2), k+2)*(4*k+9)/2, a(2*k+1) = (k+4)*4^(k+2)-(k+3)*binomial(2*(k+3), k+3), k >= 0.
a(n) = A054336(n+3, 3) (fourth column of convolution triangle). G.f.: (1/(1-x-x^2*c(x^2)))^4, with c(x) the g.f. for the Catalan numbers A000108.
G.f.: (c(x/(2x-1))/(1-2x))^4. - Michael Somos, Jul 31 2005
PROG
(PARI) {a(n)=local(k); if(n<0, 0, k=n\2; if(n%2, (k+4)*4^(k+2)-(k+3)*binomial(2*(k+3), k+3), (2*k+7)*4^(k+1)-binomial(2*(k+2), k+2)*(4*k+9)/2 ))}
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, Mar 27 2000
STATUS
approved