OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
G.f.: cbie(x)*x/(-x+1/cbie(x)), with cbie(x)=1/sqrt(1-4*x) = g.f. for A000984.
a(n) = A026671(n) - binomial(2*n, n).
a(n) = Sum_{k=1..n} a(k-1)*binomial(2*(n-k), n-k) + 4^(n-1), n >= 1.
Recurrence: (n-2)*a(n) = 2*(4*n-9)*a(n-1) - (15*n-38)*a(n-2) - 2*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 09 2012
a(n) ~ (sqrt(5)+2)^n/sqrt(5). - Vaclav Kotesovec, Oct 09 2012
a(n) = Sum_{k=1..n} binomial(2*n,n-k)*F(k), where F denotes a Fibonacci number (A000045). - Vladimir Kruchinin, Mar 19 2016
MATHEMATICA
Table[SeriesCoefficient[x/((-x+Sqrt[1-4*x])*Sqrt[1-4*x]), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 09 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(x/((-x+sqrt(1-4*x))*sqrt(1-4*x)))) \\ Joerg Arndt, May 06 2013
(Maxima)
a(n):=sum(fib(k)*binomial(2*n, n-k), k, 1, n); /* Vladimir Kruchinin, Mar 19 2016 */
(Magma) [(&+[Binomial(2*n, n-k)*Fibonacci(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 15 2019
(Sage) [sum(binomial(2*n, n-k)*fibonacci(k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jul 15 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Binomial(2*n, n-k)*Fibonacci(k) )); # G. C. Greubel, Jul 15 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 21 2000
STATUS
approved