login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289803 p-INVERT of the even bisection (A001906) of the Fibonacci numbers, where p(S) = 1 - S - S^2. 3
1, 5, 23, 103, 456, 2009, 8833, 38803, 170399, 748176, 3284833, 14421533, 63314735, 277968871, 1220356440, 5357681369, 23521603225, 103265890987, 453363808127, 1990383615264, 8738295434881, 38363361811637, 168425013526727, 739429075564711, 3246283590352104 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7, -13, 7, -1)

FORMULA

G.f.: (1 - 2 x + x^2)/(1 - 7 x + 13 x^2 - 7 x^3 + x^4).

a(n) = 7*a(n-1) - 13*a(n-2) + 7*a(n-3) - a(n-4).

MATHEMATICA

z = 60; s = x/(1 - 3*x + x^2); p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A001906 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289803 *)

CROSSREFS

Cf. A001906, A289780, A298804.

Sequence in context: A258431 A120902 A054441 * A102285 A218985 A129162

Adjacent sequences:  A289800 A289801 A289802 * A289804 A289805 A289806

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 11:14 EDT 2021. Contains 346326 sequences. (Running on oeis4.)