login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054445
Triangle read by rows giving partial row sums of triangle A033184(n,m), n >= m >= 1 (Catalan triangle).
3
1, 2, 1, 5, 3, 1, 14, 9, 4, 1, 42, 28, 14, 5, 1, 132, 90, 48, 20, 6, 1, 429, 297, 165, 75, 27, 7, 1, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1, 16796, 11934, 7072, 3640, 1638, 637, 208, 54, 10, 1, 58786, 41990, 25194, 13260
OFFSET
0,2
COMMENTS
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is (c(z)^2)/(1-x*z*c(z)) with c(z) = g.f. A000108 (Catalan numbers).
This coincides with the lower triangular Catalan convolution matrix A033184 with first row and first column deleted: a(n,m)= A033184(n+2,m+2), n >= m >= 0, a(n,m) := 0 if n<m.
The Catalan convolution matrix R(n,m) = A033184(n+1,m+1), n >= m >= 0, is the only Riordan-type matrix with R(0,0)=1 whose partial row sums (prs) matrix satisfies (prs(R))(n,m)= R(n+1,m+1), n >= m >= 0.
Riordan array (c(x)^2,x*c(x)) where c(x)is the g.f. of A000108. - Philippe Deléham, Nov 11 2009
FORMULA
T(n, m) = Sum_{k=m..n} A033184(n+1, k+1), (partial row sums in columns m).
Column m recursion: a(n, m)= sum(a(j-1, m)*A033184(n-j+1, 1), j=m..n) + A033184(n+1, m+1) if n >= m >= 0, a(n, m) := 0 if n<m.
G.f. for column m: (c(x)^2)*(x*c(x))^m, m >= 0, with c(x) = g.f. A000108.
From Gary W. Adamson, Jan 19 2012: (Start)
n-th row of the triangle = top row of M^n, where M is the following infinite square production matrix:
2, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
(End)
G.f.: (((2-2*x)*y)/(2*y+x*sqrt(1-4*y)-x)-1)/(x*y). - Vladimir Kruchinin, Apr 13 2015
T(n, m) = (m+1) * binomial(2*n - m, n) / (n+1) if n>=m>=1. - Michael Somos, Oct 01 2018
EXAMPLE
Triangle starts:
1;
2, 1;
5, 3, 1;
14, 9, 4, 1;
42, 28, 14, 5, 1;
132, 90, 48, 20, 6, 1;
...
Fourth row polynomial (n=3): p(3,x)= 14 + 9*x + 4*x^2 + x^3.
Top row of M^3 = [14, 9, 4, 1, 0, 0, 0, ...].
MATHEMATICA
T[n_, k_] := SeriesCoefficient[((2-2*x)*y)/(2*y+x*Sqrt[1-4*y]-x), {x, 0, n}, {y, 0, k}]; Table[T[n-k+2, k], {n, 0, 10}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Apr 13 2015, after Vladimir Kruchinin *)
T[ n_, k_] := (k + 1) Binomial[2 n - k, n] / (n + 1); (* Michael Somos, Oct 01 2018 *)
PROG
(PARI)
tabl(nn) = {
default(seriesprecision, nn+1);
my( gf = ((2-2*x)*y)/(2*y+x*sqrt(1-4*y)-x) + O(x^nn) );
for (n=0, nn-1, my( P = polcoeff(gf, n, x) );
for (k=0, nn-1, print1(polcoeff(P, k, y), ", "); );
print(); );
} \\ Michel Marcus, Apr 13 2015
CROSSREFS
Cf. A033184, A000108. Row sums: a(n+1, 1).
Sequence in context: A132808 A135233 A125170 * A105848 A048471 A067345
KEYWORD
easy,nonn,tabl
AUTHOR
Wolfdieter Lang, Apr 27 2000 and May 08 2000
STATUS
approved