Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jun 05 2021 06:29:28
%S 1,2,1,5,3,1,14,9,4,1,42,28,14,5,1,132,90,48,20,6,1,429,297,165,75,27,
%T 7,1,1430,1001,572,275,110,35,8,1,4862,3432,2002,1001,429,154,44,9,1,
%U 16796,11934,7072,3640,1638,637,208,54,10,1,58786,41990,25194,13260
%N Triangle read by rows giving partial row sums of triangle A033184(n,m), n >= m >= 1 (Catalan triangle).
%C In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is (c(z)^2)/(1-x*z*c(z)) with c(z) = g.f. A000108 (Catalan numbers).
%C This coincides with the lower triangular Catalan convolution matrix A033184 with first row and first column deleted: a(n,m)= A033184(n+2,m+2), n >= m >= 0, a(n,m) := 0 if n<m.
%C The Catalan convolution matrix R(n,m) = A033184(n+1,m+1), n >= m >= 0, is the only Riordan-type matrix with R(0,0)=1 whose partial row sums (prs) matrix satisfies (prs(R))(n,m)= R(n+1,m+1), n >= m >= 0.
%C Riordan array (c(x)^2,x*c(x)) where c(x)is the g.f. of A000108. - _Philippe Deléham_, Nov 11 2009
%F T(n, m) = Sum_{k=m..n} A033184(n+1, k+1), (partial row sums in columns m).
%F Column m recursion: a(n, m)= sum(a(j-1, m)*A033184(n-j+1, 1), j=m..n) + A033184(n+1, m+1) if n >= m >= 0, a(n, m) := 0 if n<m.
%F G.f. for column m: (c(x)^2)*(x*c(x))^m, m >= 0, with c(x) = g.f. A000108.
%F From _Gary W. Adamson_, Jan 19 2012: (Start)
%F n-th row of the triangle = top row of M^n, where M is the following infinite square production matrix:
%F 2, 1, 0, 0, 0, ...
%F 1, 1, 1, 0, 0, ...
%F 1, 1, 1, 1, 0, ...
%F 1, 1, 1, 1, 1, ...
%F ...
%F (End)
%F G.f.: (((2-2*x)*y)/(2*y+x*sqrt(1-4*y)-x)-1)/(x*y). - _Vladimir Kruchinin_, Apr 13 2015
%F T(n, m) = (m+1) * binomial(2*n - m, n) / (n+1) if n>=m>=1. - _Michael Somos_, Oct 01 2018
%e Triangle starts:
%e 1;
%e 2, 1;
%e 5, 3, 1;
%e 14, 9, 4, 1;
%e 42, 28, 14, 5, 1;
%e 132, 90, 48, 20, 6, 1;
%e ...
%e Fourth row polynomial (n=3): p(3,x)= 14 + 9*x + 4*x^2 + x^3.
%e Top row of M^3 = [14, 9, 4, 1, 0, 0, 0, ...].
%t T[n_, k_] := SeriesCoefficient[((2-2*x)*y)/(2*y+x*Sqrt[1-4*y]-x), {x, 0, n}, {y, 0, k}]; Table[T[n-k+2, k], {n, 0, 10}, {k, n+1, 1, -1}] // Flatten (* _Jean-François Alcover_, Apr 13 2015, after _Vladimir Kruchinin_ *)
%t T[ n_, k_] := (k + 1) Binomial[2 n - k, n] / (n + 1); (* _Michael Somos_, Oct 01 2018 *)
%o (PARI)
%o tabl(nn) = {
%o default(seriesprecision, nn+1);
%o my( gf = ((2-2*x)*y)/(2*y+x*sqrt(1-4*y)-x) + O(x^nn) );
%o for (n=0, nn-1, my( P = polcoeff(gf, n, x) );
%o for (k=0, nn-1, print1(polcoeff(P, k, y), ", "); );
%o print(); );
%o } \\ _Michel Marcus_, Apr 13 2015
%Y Cf. A033184, A000108. Row sums: a(n+1, 1).
%K easy,nonn,tabl
%O 0,2
%A _Wolfdieter Lang_, Apr 27 2000 and May 08 2000