OFFSET
0,2
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..2604
Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
Index entries for linear recurrences with constant coefficients, signature (4, -2, -4, -1).
FORMULA
a(n) = Sum_{m=0..n} A054446(n,m) = ((n+1)*P(n+2)+(2-n)*P(n+1))/4, with P(n)=A000129(n) (Pell numbers).
G.f.: Pell(x)/(1-x*Fib(x)) = (Pell(x)^2)/Fib(x), with Pell(x)= 1/(1-2*x-x^2) = g.f. A000129(n+1) (Pell numbers without 0) and Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1) (Fibonacci numbers without 0).
a(n) = Sum_(k*Sum_(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k),k,1,n), n>0. - Vladimir Kruchinin, Sep 06 2010
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4), a(0)=1, a(1)=3, a(2)=9, a(3)=26. - Philippe Deléham, Jan 22 2014
G.f.: (1-x-x^2)/(1-2*x-x^2)^2 = g(f(x))/x, where g is g.f. of A001477 and f is g.f. of A000045. - Oboifeng Dira, Jun 21 2020
MATHEMATICA
LinearRecurrence[{4, -2, -4, -1}, {1, 3, 9, 26}, 30] (* Michael De Vlieger, Jun 23 2020 *)
PROG
(Maxima) a(n):=sum(k*sum(binomial(i, n-k-i)*binomial(k+i-1, k-1), i, ceiling((n-k)/2), n-k), k, 1, n); /* Vladimir Kruchinin, Sep 06 2010 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, Apr 27 2000
STATUS
approved