login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054447
Row sums of triangle A054446 (partial row sums triangle of Fibonacci convolution triangle).
4
1, 3, 9, 26, 73, 201, 545, 1460, 3873, 10191, 26633, 69198, 178889, 460437, 1180545, 3016552, 7684481, 19522203, 49473097, 125093506, 315654537, 795016545, 1998909985, 5017895196, 12578040097, 31485713511, 78716283081, 196563649718, 490301138569, 1221726409005
OFFSET
0,2
LINKS
Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
FORMULA
a(n) = Sum_{m=0..n} A054446(n,m) = ((n+1)*P(n+2)+(2-n)*P(n+1))/4, with P(n)=A000129(n) (Pell numbers).
G.f.: Pell(x)/(1-x*Fib(x)) = (Pell(x)^2)/Fib(x), with Pell(x)= 1/(1-2*x-x^2) = g.f. A000129(n+1) (Pell numbers without 0) and Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1) (Fibonacci numbers without 0).
a(n) = Sum_(k*Sum_(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k),k,1,n), n>0. - Vladimir Kruchinin, Sep 06 2010
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4), a(0)=1, a(1)=3, a(2)=9, a(3)=26. - Philippe Deléham, Jan 22 2014
G.f.: (1-x-x^2)/(1-2*x-x^2)^2 = g(f(x))/x, where g is g.f. of A001477 and f is g.f. of A000045. - Oboifeng Dira, Jun 21 2020
MATHEMATICA
LinearRecurrence[{4, -2, -4, -1}, {1, 3, 9, 26}, 30] (* Michael De Vlieger, Jun 23 2020 *)
PROG
(Maxima) a(n):=sum(k*sum(binomial(i, n-k-i)*binomial(k+i-1, k-1), i, ceiling((n-k)/2), n-k), k, 1, n); /* Vladimir Kruchinin, Sep 06 2010 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, Apr 27 2000
STATUS
approved