OFFSET
0,4
COMMENTS
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.
LINKS
FORMULA
T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n<m.
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
5, 4, 4, 1, 1;
8, 8, 5, 5, 1, 1;
13, 12, 12, 6, 6, 1, 1;
21, 21, 17, 17, 7, 7, 1, 1;
34, 33, 33, 23, 23, 8, 8, 1, 1;
55, 55, 50, 50, 30, 30, 9, 9, 1, 1;
89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1;
...
Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
MATHEMATICA
PROG
(Magma)
A049310:= func< n, k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
[A054450(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
(SageMath)
@CachedFunction
def A049310(n, k):
if (n<0): return 0
elif (k==n): return 1
flatten([[A054450(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Apr 27 2000 and May 08 2000
STATUS
approved