login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099572
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+4, k).
5
1, 1, 6, 7, 23, 30, 73, 103, 211, 314, 581, 895, 1560, 2455, 4135, 6590, 10890, 17480, 28590, 46070, 74946, 121016, 196326, 317342, 514123, 831465, 1346148, 2177613, 3524441, 5702054, 9227311, 14929365, 24157645, 39087010, 63245795, 102332805
OFFSET
0,3
COMMENTS
Fifth column of triangle A054450. In general Sum_{k=0..floor(n/2)} binomial(n-k+r, k), r>=0, will have g.f. 1/((1-x^2)^r*(1-x-x^2)) and for r>0, a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+r-1, r-1)*(1+(-1)^k)/2.
LINKS
FORMULA
G.f.: 1/((1-x^2)^4*(1-x-x^2)). - corrected by R. J. Mathar, Feb 20 2011
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*binomial(k/2+3, 3)*((1+(-1)^k)/2).
a(n) = Fibonacci(n+5) + (-1)^n*(n^3 + 9*n^2 + 35*n + 33)/96 - (n^3 + 21*n^2 + 155*n + 417)/96. - G. C. Greubel, Jul 25 2022
MATHEMATICA
Table[Fibonacci(n+5) +(-1)^n*(n^3+9*n^2+35*n+33)/96 -(n^3+21*n^2+155*n+417)/96, {n, 0, 40}] (* G. C. Greubel, Jul 25 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x^2)^4*(1-x-x^2)) )); // G. C. Greubel, Jul 25 2022
(SageMath) [fibonacci(n+5) + (-1)^n*(n^3+9*n^2+35*n+33)/96 - (n^3+21*n^2+155*n + 417)/96 for n in (0..40)] # G. C. Greubel, Jul 25 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 23 2004
STATUS
approved