login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099570
Expansion of ((1+x)^2 - x^3)/(1+x)^2.
3
1, 0, 0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59, 60, -61, 62, -63, 64, -65, 66, -67, 68, -69, 70, -71, 72, -73
OFFSET
0,5
COMMENTS
Row sums of number triangle A099569.
FORMULA
a(n) = 2*0^n + (-1)^n*(n-2) - Sum_{k=0..n} k*binomial(n, k)*(-1)^(n-k).
a(n) = -2*a(n-1) - a(n-2), n>3, with a(0) = 1, a(1) = 0, a(2) = 0, a(3) = -1.
From G. C. Greubel, Jul 25 2022: (Start)
a(n) = (-1)^n*(n-2) - [n=1] + 3*[n=0].
a(n) = A038608(n-2), for n >= 2, with a(0) = 1, a(1) = 0.
E.g.f.: 3 - x - (x+2)*exp(-x). (End)
MATHEMATICA
Table[(-1)^n*(n-2) -Boole[n==1]+3*Boole[n==0], {n, 0, 100}] (* G. C. Greubel, Jul 25 2022 *)
PROG
(Magma) [1, 0] cat [(-1)^n*(n-2): n in [2..100]]; // G. C. Greubel, Jul 25 2022
(SageMath) [(-1)^n*(n-2) -bool(n==1) +3*bool(n==0) for n in (0..100)] # G. C. Greubel, Jul 25 2022
CROSSREFS
Sequence in context: A136602 A173474 A023443 * A114142 A020725 A119972
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 22 2004
STATUS
approved