login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099573
Reverse of number triangle A054450.
3
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 5, 1, 1, 5, 5, 8, 8, 1, 1, 6, 6, 12, 12, 13, 1, 1, 7, 7, 17, 17, 21, 21, 1, 1, 8, 8, 23, 23, 33, 33, 34, 1, 1, 9, 9, 30, 30, 50, 50, 55, 55, 1, 1, 10, 10, 38, 38, 73, 73, 88, 88, 89, 1, 1, 11, 11, 47, 47, 103, 103, 138, 138, 144, 144, 1, 1, 12, 12, 57, 57, 141, 141, 211, 211, 232, 232, 233
OFFSET
0,6
FORMULA
Number triangle T(n, k) = Sum_{j=0..floor(k/2)} binomial(n-j, j) if k <= n, 0 otherwise.
T(n, n) = A000045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099574(n).
Sum_{k=0..n} T(n, k) = A029907(n+1).
Antidiagonals of the following array: the first row equals the Fibonacci numbers, (1, 1, 2, 3, 5, ...), and the (n+1)-st row is obtained by the matrix-vector product A128174 * n-th row. - Gary W. Adamson, Jan 19 2011
From G. C. Greubel, Jul 25 2022: (Start)
T(n, n-1) = A052952(n-1), n >= 1.
T(n, n-2) = A054451(n-2), n >= 2.
T(n, n-3) = A099571(n-3), n >= 3.
T(n, n-4) = A099572(n-4), n >= 4. (End)
EXAMPLE
First few rows of the array:
1, 1, 2, 3, 5, 8, ... (A000045)
1, 1, 3, 4, 8, 12, ... (A052952)
1, 1, 4, 5, 12, 17, ... (A054451)
1, 1, 5, 6, 17, 23, ... (A099571)
1, 1, 6, 7, 23, 30, ... (A099572)
...
Triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 3, 3;
1, 1, 4, 4, 5;
1, 1, 5, 5, 8, 8;
1, 1, 6, 6, 12, 12, 13;
1, 1, 7, 7, 17, 17, 21, 21;
1, 1, 8, 8, 23, 23, 33, 33, 34;
1, 1, 9, 9, 30, 30, 50, 50, 55, 55;
MATHEMATICA
T[n_, k_]:= Sum[Binomial[n-j, j], {j, 0, Floor[k/2]}];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
PROG
(Magma) [(&+[Binomial(n-j, j): j in [0..Floor(k/2)]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
(SageMath)
def A099573(n, k): return sum(binomial(n-j, j) for j in (0..(k//2)))
flatten([[A099573(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
CROSSREFS
Cf. A099571, A099572, A099574 (diagonal sums), A099575.
Sequence in context: A096589 A176427 A324592 * A107430 A330885 A355146
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 23 2004
STATUS
approved