The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096589 Symmetric square array T(n,k)=T(k,n), read by antidiagonals, such that T(n,k) equals the dot product of the k-th antidiagonal with the initial terms of the (n-k)-th row when n>=k, with T(n,0)=1. 1
 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 8, 8, 5, 1, 1, 6, 11, 8, 11, 6, 1, 1, 7, 17, 20, 20, 17, 7, 1, 1, 8, 22, 30, 14, 30, 22, 8, 1, 1, 9, 30, 45, 42, 42, 45, 30, 9, 1, 1, 10, 37, 69, 72, 28, 72, 69, 37, 10, 1, 1, 11, 47, 100, 101, 98, 98, 101, 100, 47, 11, 1, 1, 12, 56, 133, 159 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Main diagonal equals the antidiagonal sums (A096590). LINKS Table of n, a(n) for n=0..82. FORMULA T(n, k) = Sum_{j=0, k} T(k-j, j)*T(n-k, j) when n>=k, else T(n, k)=T(k, n). EXAMPLE T(5,2) = 17 = 1*1+2*4+1*8 = T(2,0)*T(3,0) + T(1,1)*T(3,1) + T(0,2)*T(3,2). T(7,3) = 69 = 1*1+3*5+3*11+1*20 = T(3,0)*T(4,0) + T(2,1)*T(4,1) + T(1,2)*T(4,2) + T(0,3)*T(4,3). Rows begin: [1,1,1,1,1,1,1,1,1,1,...], [1,2,3,4,5,6,7,8,9,10,...], [1,3,4,8,11,17,22,30,37,47,...], [1,4,8,8,20,30,45,69,100,133,...], [1,5,11,20,14,42,72,101,159,255,...], [1,6,17,30,42,28,98,184,279,386,...], [1,7,22,45,72,98,44,176,372,622,...], [1,8,30,69,101,184,176,90,405,943,...], [1,9,37,100,159,279,372,405,136,680,...], [1,10,47,133,255,386,622,943,680,254,...],... PROG (PARI) T(n, k)=if(n<0 || k<0, 0, if(n==0 || k==0, 1, if(n>k, sum(j=0, k, T(n-k, j)*T(k-j, j)), sum(j=0, n, T(k-n, j)*T(n-j, j)); ); )) CROSSREFS Cf. A096590. Sequence in context: A318274 A329330 A049695 * A176427 A324592 A099573 Adjacent sequences: A096586 A096587 A096588 * A096590 A096591 A096592 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Jun 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 11:24 EDT 2024. Contains 376000 sequences. (Running on oeis4.)