login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099574
Diagonal sums of triangle A099573.
4
1, 1, 2, 2, 4, 5, 9, 11, 18, 23, 37, 48, 74, 97, 147, 195, 290, 387, 568, 763, 1108, 1495, 2152, 2915, 4167, 5662, 8047, 10962, 15506, 21168, 29825, 40787, 57280, 78448, 109870, 150657, 210521, 288969, 403020, 553677, 770963, 1059932, 1473898
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor(k/2)} binomial(n-k-j, j).
G.f.: (1-x)*(1+x)*(1+x^2) / ( (1-x-x^4)*(1-x^2-x^4) ). - R. J. Mathar, Nov 11 2014
From G. C. Greubel, Jul 25 2022: (Start)
a(n) = A003269(n+5) - A079977(n+3) - A079977(n+2).
a(n) = A003269(n+5) - A103609(n+5). (End)
MATHEMATICA
a[n_]:= a[n]= Sum[Binomial[n-k-j, j], {k, 0, Floor[n/2]}, {j, 0, Floor[k/2]}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jul 25 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^4)/((1-x^2-x^4)*(1-x-x^4)) )); // G. C. Greubel, Jul 25 2022
(SageMath)
@CachedFunction
def A099574(n): return sum(sum(binomial(n-k-j, j) for j in (0..(k//2))) for k in (0..(n//2)))
[A099574(n) for n in (0..40)] # G. C. Greubel, Jul 25 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 23 2004
STATUS
approved