login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229816
Number of partitions of n such that if the length is k then k is not a part.
33
1, 0, 2, 2, 4, 5, 9, 11, 18, 23, 34, 44, 63, 80, 111, 142, 190, 242, 319, 402, 522, 655, 837, 1045, 1322, 1638, 2053, 2532, 3144, 3857, 4757, 5803, 7111, 8636, 10516, 12716, 15404, 18543, 22355, 26807, 32168, 38430, 45929, 54670, 65088, 77220, 91599, 108330, 128077, 151006, 177974
OFFSET
0,3
COMMENTS
For example with n=5 neither 32 or 311 are allowed.
Conjecture: Also, for n>=1, a(n-1) is the total number of distinct parts of each partition of 2n with partition rank n. - George Beck, Jun 23 2019
LINKS
FORMULA
a(n) = A000041(n) - A002865(n-1), n>=1. [Joerg Arndt, Sep 30 2013]
G.f.: 1/E(x) - x*(1-x)/E(x) where E(x) = Product_{k>=1} 1-x^k. [Joerg Arndt, Sep 30 2013]
EXAMPLE
a(2) = 2 : 2, 11.
a(6) = 9 : 6, 51, 411, 33, 3111, 222, 2211, 21111, 111111.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<t, 0,
b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, t))))
end:
a:= n-> b(n$2, 1)-b((n-1)$2, 2):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 30 2013
MATHEMATICA
nn=50; CoefficientList[Series[ Product[1/(1-x^i), {i, 1, nn}]-x Product[1/(1-x^i), {i, 2, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 30 2013 *)
Table[PartitionsP[n] - (PartitionsP[n - 1] - PartitionsP[n - 2]), {n, 0, 60}] (* Vincenzo Librandi, Juan 30 2019 *)
PROG
(PARI)
N=66; x='x+O('x^N);
gf = 1/eta(x) - x*(1-x)/eta(x);
Vec( gf )
\\ Joerg Arndt, Sep 30 2013
CROSSREFS
Cf. A116645.
Cf. A002865 (partitions where the number of parts is itself a part).
Sequence in context: A326527 A326632 A240206 * A099574 A144118 A187069
KEYWORD
nonn
AUTHOR
Jon Perry, Sep 30 2013
EXTENSIONS
Corrected a(8) and extended beyond a(9), Joerg Arndt, Sep 30 2013
STATUS
approved