This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229818 Even bisection gives sequence a itself, n->a(2*(3*n+k)-1) gives k-th differences of a for k=1..3 with a(n)=n for n<2. 9
 0, 1, 1, -1, 1, -1, -1, 0, 1, -2, -1, 6, -1, -2, 0, 4, 1, -8, -2, 2, -1, -4, 6, 6, -1, -2, -2, 2, 0, -1, 4, 0, 1, 1, -8, -1, -2, 1, 2, 0, -1, -4, -4, 1, 6, -4, 6, 8, -1, -3, -2, 4, -2, 2, 2, 1, 0, 6, -1, -20, 4, 7, 0, -14, 1, 20, 1, -7, -8, 6, -1, -3, -2, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(2*n)   = a(n), a(6*n+1) = a(n+1) - a(n), a(6*n+3) = a(n+2) - 2*a(n+1) + a(n), a(6*n+5) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n). MAPLE a:= proc(n) option remember; local m, q, r;       m:= (irem(n, 6, 'q')+1)/2;       `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),       add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))     end: seq(a(n), n=0..100); MATHEMATICA a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 6]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2017, translated from Maple *) CROSSREFS Cf. A005590, A229817, A229819, A229820, A229821, A229822, A229823, A229824, A229825. Sequence in context: A139547 A323855 A126342 * A324500 A082388 A178254 Adjacent sequences:  A229815 A229816 A229817 * A229819 A229820 A229821 KEYWORD sign,eigen AUTHOR Alois P. Heinz, Sep 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)