login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229818 Even bisection gives sequence a itself, n->a(2*(3*n+k)-1) gives k-th differences of a for k=1..3 with a(n)=n for n<2. 9
0, 1, 1, -1, 1, -1, -1, 0, 1, -2, -1, 6, -1, -2, 0, 4, 1, -8, -2, 2, -1, -4, 6, 6, -1, -2, -2, 2, 0, -1, 4, 0, 1, 1, -8, -1, -2, 1, 2, 0, -1, -4, -4, 1, 6, -4, 6, 8, -1, -3, -2, 4, -2, 2, 2, 1, 0, 6, -1, -20, 4, 7, 0, -14, 1, 20, 1, -7, -8, 6, -1, -3, -2, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

FORMULA

a(2*n)   = a(n),

a(6*n+1) = a(n+1) - a(n),

a(6*n+3) = a(n+2) - 2*a(n+1) + a(n),

a(6*n+5) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n).

MAPLE

a:= proc(n) option remember; local m, q, r;

      m:= (irem(n, 6, 'q')+1)/2;

      `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),

      add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))

    end:

seq(a(n), n=0..100);

MATHEMATICA

a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 6]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, Mar 08 2017, translated from Maple *)

CROSSREFS

Cf. A005590, A229817, A229819, A229820, A229821, A229822, A229823, A229824, A229825.

Sequence in context: A323855 A126342 A345461 * A324500 A082388 A178254

Adjacent sequences:  A229815 A229816 A229817 * A229819 A229820 A229821

KEYWORD

sign,eigen

AUTHOR

Alois P. Heinz, Sep 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 18:00 EDT 2021. Contains 346488 sequences. (Running on oeis4.)