login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229820
Even bisection gives sequence a itself, n->a(2*(5*n+k)-1) gives k-th differences of a for k=1..5 with a(n)=n for n<2.
9
0, 1, 1, -1, 1, -1, -1, 7, 1, -21, -1, 0, -1, -2, 7, 6, 1, -14, -21, 28, -1, -2, 0, 4, -1, -8, -2, 14, 7, -14, 6, 2, 1, -4, -14, 6, -21, 0, 28, -28, -1, -2, -2, 2, 0, 6, 4, -28, -1, 48, -8, 0, -2, 8, 14, -22, 7, 20, -14, 40, 6, 8, 2, -14, 1, -2, -4, 60, -14
OFFSET
0,8
LINKS
FORMULA
a(2*n) = a(n),
a(2*(5*n+k)-1) = Sum_{j=0..k} (-1)^j * C(k,j) * a(n+k-j) for k=1..5.
MAPLE
a:= proc(n) option remember; local m, q, r;
m:= (irem(n, 10, 'q')+1)/2;
`if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),
add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))
end:
seq(a(n), n=0..100);
MATHEMATICA
a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 10]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2017, translated from Maple *)
KEYWORD
sign,eigen
AUTHOR
Alois P. Heinz, Sep 30 2013
STATUS
approved