OFFSET
1,3
COMMENTS
Table starts
1 1 1 1 1
7 19 37 61 91
91 1047 5453 18903 51205
2277 176471 3395245 31640829 189677411
111031 92031109 9032683465 289301569283 4677360495205
10654607 149824887097 103565705397639 14572563308953245 774355028021195459
T(n,k) is the number of integer lattice points in kP where P is a (n*(n+1)/2-1)-dimensional polytope with vertices whose coordinates are all in {-1,0,1}. Therefore it is an Ehrhart polynomial in k, with degree n*(n+1)/2-1 and rational coefficients. - Robert Israel, Oct 06 2019
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..86
Wikipedia, Ehrhart polynomial
FORMULA
Empirical for rows:
T(1,k) = 1
T(2,k) = 3*k^2 + 3*k + 1
T(3,k) = (301/30)*k^5 + (301/12)*k^4 + (88/3)*k^3 + (227/12)*k^2 + (199/30)*k + 1
T(4,k) = (1207573/30240)*k^9 + (1207573/6720)*k^8 + (1000157/2520)*k^7 + (264247/480)*k^6 + (754417/1440)*k^5 + (338651/960)*k^4 + (2533393/15120)*k^3 + (90763/1680)*k^2 + (901/84)*k + 1
T(5,k) = (3508493543/18345600)*k^14 + (3508493543/2620800)*k^13 + (1116775769537/239500800)*k^12 + (422094048023/39916800)*k^11 + (377328209183/21772800)*k^10 + (78475421219/3628800)*k^9 + (1073748492569/50803200)*k^8 + (19848770813/1209600)*k^7 + (221251862417/21772800)*k^6 + (18121075223/3628800)*k^5 + (10435002133/5443200)*k^4 + (505904317/907200)*k^3 + (8793472607/75675600)*k^2 + (1397863/90090)*k + 1
EXAMPLE
Some solutions for n=6, k=5:
0 0 0 0
4 4 2 2 2 1 4 5
6 7 7 7 6 5 -3 -2 1 5 8 7
10 8 12 7 4 7 6 1 -6 -1 -4 -2 8 9 5 7
10 12 11 12 9 2 3 5 1 0 -1 -1 -1 -1 -2 5 5 8 9 8
7 7 8 12 9 5 1 3 5 2 4 5 -6 -3 0 0 1 -3 0 3 8 8 10 6
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 13 2011
STATUS
approved