|
|
A195223
|
|
Number of lower triangles of a 5 X 5 integer array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by n or less and triangles differing by a constant counted only once.
|
|
1
|
|
|
111031, 92031109, 9032683465, 289301569283, 4677360495205, 47764170577925, 350767341744137, 2010235691940497, 9496465116615081, 38429133040711965, 136997589911672127, 439401533118090493, 1288688520518224397
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (3508493543/18345600)*n^14 + (3508493543/2620800)*n^13 + (1116775769537/239500800)*n^12 + (422094048023/39916800)*n^11 + (377328209183/21772800)*n^10 + (78475421219/3628800)*n^9 + (1073748492569/50803200)*n^8 + (19848770813/1209600)*n^7 + (221251862417/21772800)*n^6 + (18121075223/3628800)*n^5 + (10435002133/5443200)*n^4 + (505904317/907200)*n^3 + (8793472607/75675600)*n^2 + (1397863/90090)*n + 1.
Since a(n) is an Ehrhart polynomial of degree 14 (see A195220), and the empirical polynomial fits the Data for 1 <= n <= 15, it must be correct. - Robert Israel, Oct 06 2019
|
|
EXAMPLE
|
Some solutions for n=5:
0 0 0 0 0
2 4 5 2 3 3 1 5 1 4
7 2 3 1 5 6 5 7 6 2 3 2 -1 0 -1
5 4 3 7 2 4 1 1 3 8 7 3 5 6 3 0 0 3 0 2
6 5 6 2 5 5 3 6 3 1 5 3 5 6 2 9 7 2 0 0 5 3 -1 4 3
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|