login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of lower triangles of an n X n integer array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by k or less and triangles differing by a constant counted only once.
13

%I #12 Oct 07 2019 03:05:18

%S 1,1,7,1,19,91,1,37,1047,2277,1,61,5453,176471,111031,1,91,18903,

%T 3395245,92031109,10654607,1,127,51205,31640829,9032683465,

%U 149824887097,2021888119,1,169,117585,189677411,289301569283,103565705397639

%N T(n,k) is the number of lower triangles of an n X n integer array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by k or less and triangles differing by a constant counted only once.

%C Table starts

%C 1 1 1 1 1

%C 7 19 37 61 91

%C 91 1047 5453 18903 51205

%C 2277 176471 3395245 31640829 189677411

%C 111031 92031109 9032683465 289301569283 4677360495205

%C 10654607 149824887097 103565705397639 14572563308953245 774355028021195459

%C T(n,k) is the number of integer lattice points in kP where P is a (n*(n+1)/2-1)-dimensional polytope with vertices whose coordinates are all in {-1,0,1}. Therefore it is an Ehrhart polynomial in k, with degree n*(n+1)/2-1 and rational coefficients. - _Robert Israel_, Oct 06 2019

%H R. H. Hardin, <a href="/A195220/b195220.txt">Table of n, a(n) for n = 1..86</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Ehrhart_polynomial">Ehrhart polynomial</a>

%F Empirical for rows:

%F T(1,k) = 1

%F T(2,k) = 3*k^2 + 3*k + 1

%F T(3,k) = (301/30)*k^5 + (301/12)*k^4 + (88/3)*k^3 + (227/12)*k^2 + (199/30)*k + 1

%F T(4,k) = (1207573/30240)*k^9 + (1207573/6720)*k^8 + (1000157/2520)*k^7 + (264247/480)*k^6 + (754417/1440)*k^5 + (338651/960)*k^4 + (2533393/15120)*k^3 + (90763/1680)*k^2 + (901/84)*k + 1

%F T(5,k) = (3508493543/18345600)*k^14 + (3508493543/2620800)*k^13 + (1116775769537/239500800)*k^12 + (422094048023/39916800)*k^11 + (377328209183/21772800)*k^10 + (78475421219/3628800)*k^9 + (1073748492569/50803200)*k^8 + (19848770813/1209600)*k^7 + (221251862417/21772800)*k^6 + (18121075223/3628800)*k^5 + (10435002133/5443200)*k^4 + (505904317/907200)*k^3 + (8793472607/75675600)*k^2 + (1397863/90090)*k + 1

%e Some solutions for n=6, k=5:

%e 0 0 0 0

%e 4 4 2 2 2 1 4 5

%e 6 7 7 7 6 5 -3 -2 1 5 8 7

%e 10 8 12 7 4 7 6 1 -6 -1 -4 -2 8 9 5 7

%e 10 12 11 12 9 2 3 5 1 0 -1 -1 -1 -1 -2 5 5 8 9 8

%e 7 7 8 12 9 5 1 3 5 2 4 5 -6 -3 0 0 1 -3 0 3 8 8 10 6

%Y Row 2 is A003215.

%K nonn,tabl

%O 1,3

%A _R. H. Hardin_, Sep 13 2011