OFFSET
0,2
COMMENTS
EXAMPLE
The function W that satisfies: W(x,q) = exp( q*x*W(q*x,q) ) begins:
W(x,q) = 1 + q*x + (1/2 + q)*q^2*x^2 + (1/6 + 1*q + (1/2)*q^2 + 1*q^3)*q^3*x^3 +
(1/24 + (1/2)*q + 1*q^2 + (7/6)*q^3 + 1*q^4 + (1/2)*q^5 + 1*q^6)*q^4*x^4 +...
Coefficients of q in {[x^n] W(x,q)} tend to a limit when read backwards:
n=1: [1, 1/2];
n=2: [1, 1/2, 1, 1/6];
n=3: [1, 1/2, 1, 7/6, 1, 1/2, 1/24].
The limit of coefficients of q in { [x^n] W(x,q) } begins:
[1, 1/2, 1, 7/6, 2, 2, 85/24, 11/3, 65/12, 19/3, 357/40, 19/2, 111/8, 123/8, 81/4, 16891/720,...].
PROG
(PARI) {a(n)=local(W=1+x); for(i=0, n, W=exp(subst(x*W, x, q*x+O(x^(n+2))))); denominator(Vec(Vec(W)[n+2]+O(q^(n*(n+1)/2+2)))[n*(n-1)/2+1])}
CROSSREFS
KEYWORD
frac,nonn,changed
AUTHOR
Paul D. Hanna, Dec 25 2006
STATUS
approved