login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126341
Numerators of the limit of coefficients of q in { [x^n] W(x,q) } when read backward from [q^(n*(n-1)/2)] to [q^(n*(n-1)/2 - (n-1))], where W satisfies: W(x,q) = exp( q*x*W(q*x,q) ).
3
1, 1, 1, 7, 2, 2, 85, 11, 65, 19, 357, 19, 111, 123, 81, 16891, 3631, 8167, 16033, 6011, 7537, 60563, 32179, 7273, 90269, 17117, 61879, 141653, 9545369, 450889, 3251089, 230189, 1743845, 2481389, 389671, 367333, 55945199, 733219, 40966169
OFFSET
0,4
COMMENTS
When the fractions {A126341(k)/A126342(k), k>=1} are formatted as a triangle in which row n is then multiplied by n!, the result is integer triangle A126343.
FORMULA
A126341(n)/A126342(n) = A126265(n, n*(n-1)/2) / n! for n>=1.
EXAMPLE
The function W that satisfies: W(x,q) = exp( q*x*W(q*x,q) ) begins:
W(x,q) = 1 + q*x + (1/2 + q)*q^2*x^2 +
(1/6 + 1*q + 1/2*q^2 + 1*q^3)*q^3*x^3 +
(1/24 + 1/2*q + 1*q^2 + 7/6*q^3 + 1*q^4 + 1/2*q^5 + 1*q^6)*q^4*x^4 +...
Coefficients of q in {[x^n] W(x,q)} tend to a limit when read backwards:
n=1: [1, 1/2];
n=2: [1, 1/2, 1, 1/6];
n=3: [1, 1/2, 1, 7/6, 1, 1/2, 1/24].
The limit of coefficients of q in { [x^n] W(x,q) } begins:
[1, 1/2, 1, 7/6, 2, 2, 85/24, 11/3, 65/12, 19/3, 357/40, 19/2, 111/8, 123/8, 81/4, 16891/720,...].
PROG
(PARI) {a(n)=local(W=1+x); for(i=0, n, W=exp(subst(x*W, x, q*x+O(x^(n+2))))); numerator(Vec(Vec(W)[n+2]+O(q^(n*(n+1)/2+2)))[n*(n-1)/2+1])}
CROSSREFS
Cf. A126342 (denominators), A126343, A126265.
Sequence in context: A300304 A208647 A163981 * A324788 A354640 A078087
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, Dec 25 2006
STATUS
approved