login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324500 a(n) = denominator of Sum_{d|n} sigma(d)/tau(d) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005). 4
1, 2, 1, 6, 1, 2, 1, 12, 3, 1, 1, 2, 1, 2, 1, 60, 1, 3, 1, 3, 1, 2, 1, 4, 3, 1, 3, 6, 1, 1, 1, 60, 1, 1, 1, 9, 1, 2, 1, 3, 1, 2, 1, 6, 3, 2, 1, 20, 1, 6, 1, 3, 1, 3, 1, 12, 1, 1, 1, 1, 1, 2, 3, 420, 1, 2, 1, 3, 1, 1, 1, 18, 1, 1, 1, 6, 1, 1, 1, 15, 15, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sum_{d|n} sigma(d)/tau(d) > 1 for all n > 1.

Sum_{d|n} sigma(d)/tau(d) = n only for numbers n = 1, 3, 10 and 30.

LINKS

Table of n, a(n) for n=1..84.

FORMULA

a(p) = 1 for odd primes p.

a(n) = 1 for numbers in A306639.

EXAMPLE

Sum_{d|n} sigma(d)/tau(d) for n >= 1: 1, 5/2, 3, 29/6, 4, 15/2, 5, 103/12, 22/3, 10, 7, 29/2, 8, 25/2, 12, 887/60, ...

For n=4; Sum_{d|4} sigma(d)/tau(d) = sigma(1)/tau(1) + sigma(2)/tau(2) + sigma(4)/tau(4) = 1/1 + 3/2 + 7/3 = 29/6;  a(4) = 6.

MATHEMATICA

Table[Denominator[Sum[DivisorSigma[1, k]/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 100}] (* G. C. Greubel, Mar 04 2019 *)

PROG

(MAGMA) [Denominator(&+[SumOfDivisors(d) / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]

(PARI) a(n) = denominator(sumdiv(n, d, sigma(d)/numdiv(d))); \\ Michel Marcus, Mar 03 2019

(Sage) [sum(sigma(k, 1)/sigma(k, 0) for k in n.divisors() ).denominator() for n in (1..100)] # G. C. Greubel, Mar 04 2019

CROSSREFS

Cf. A000005, A000203, A323779, A323780, A323781, A324499 (numerators), A306639.

Sequence in context: A126342 A345461 A229818 * A082388 A178254 A085099

Adjacent sequences:  A324497 A324498 A324499 * A324501 A324502 A324503

KEYWORD

nonn,frac

AUTHOR

Jaroslav Krizek, Mar 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 21:03 EDT 2021. Contains 346441 sequences. (Running on oeis4.)