login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324500
a(n) = denominator of Sum_{d|n} sigma(d)/tau(d) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005).
5
1, 2, 1, 6, 1, 2, 1, 12, 3, 1, 1, 2, 1, 2, 1, 60, 1, 3, 1, 3, 1, 2, 1, 4, 3, 1, 3, 6, 1, 1, 1, 60, 1, 1, 1, 9, 1, 2, 1, 3, 1, 2, 1, 6, 3, 2, 1, 20, 1, 6, 1, 3, 1, 3, 1, 12, 1, 1, 1, 1, 1, 2, 3, 420, 1, 2, 1, 3, 1, 1, 1, 18, 1, 1, 1, 6, 1, 1, 1, 15, 15, 1, 1, 2
OFFSET
1,2
COMMENTS
Sum_{d|n} sigma(d)/tau(d) > 1 for all n > 1.
Sum_{d|n} sigma(d)/tau(d) = n only for numbers n = 1, 3, 10 and 30.
LINKS
FORMULA
a(p) = 1 for odd primes p.
a(n) = 1 for numbers in A306639.
EXAMPLE
Sum_{d|n} sigma(d)/tau(d) for n >= 1: 1, 5/2, 3, 29/6, 4, 15/2, 5, 103/12, 22/3, 10, 7, 29/2, 8, 25/2, 12, 887/60, ...
For n=4; Sum_{d|4} sigma(d)/tau(d) = sigma(1)/tau(1) + sigma(2)/tau(2) + sigma(4)/tau(4) = 1/1 + 3/2 + 7/3 = 29/6; a(4) = 6.
MATHEMATICA
Table[Denominator[Sum[DivisorSigma[1, k]/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 100}] (* G. C. Greubel, Mar 04 2019 *)
PROG
(Magma) [Denominator(&+[SumOfDivisors(d) / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = denominator(sumdiv(n, d, sigma(d)/numdiv(d))); \\ Michel Marcus, Mar 03 2019
(Sage) [sum(sigma(k, 1)/sigma(k, 0) for k in n.divisors() ).denominator() for n in (1..100)] # G. C. Greubel, Mar 04 2019
CROSSREFS
Sequence in context: A126342 A345461 A229818 * A082388 A178254 A085099
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 02 2019
STATUS
approved