login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324503
a(n) = numerator of Sum_{d|n} (d/tau(d)) where tau(k) = the number of divisors of k (A000005).
1
1, 2, 5, 10, 7, 5, 9, 16, 11, 7, 13, 25, 15, 9, 35, 128, 19, 11, 21, 35, 45, 13, 25, 40, 71, 15, 49, 15, 31, 35, 33, 208, 65, 19, 63, 55, 39, 21, 75, 56, 43, 45, 45, 65, 77, 25, 49, 64, 125, 71, 95, 25, 55, 49, 91, 24, 105, 31, 61, 175, 63, 33, 99, 2416, 105
OFFSET
1,2
COMMENTS
Sum_{d|n} (d/tau(d)) >= 1 for all n >= 1.
FORMULA
a(p) = p + 2 for p = odd primes.
EXAMPLE
Sum_{d|n} (d/tau(d)) for n >= 1: 1, 2, 5/2, 10/3, 7/2, 5, 9/2, 16/3, 11/2, 7, 13/2, 25/3, 15/2, 9, 35/4, 128/15, ...
For n=4; Sum_{d|4} (d/tau(d)) = 1/tau(1) + 2/tau(2) + 4/tau(4) = 1/1 + 2/2 + 4/3 = 10/3; a(4) = 10.
MATHEMATICA
Table[Numerator[Sum[k/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 80}] (* G. C. Greubel, Mar 04 2019 *)
PROG
(Magma) [Numerator(&+[d / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = numerator(sumdiv(n, d, d/numdiv(d))); \\ Michel Marcus, Mar 03 2019
(Sage) [sum(k/sigma(k, 0) for k in n.divisors()).numerator() for n in (1..80)] # G. C. Greubel, Mar 04 2019
CROSSREFS
Cf. A000005, A324504 (denominators).
Sequence in context: A175467 A361806 A188525 * A126842 A291933 A332198
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 03 2019
STATUS
approved