login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229815
Numbers that are simultaneously the sum of two positive squares and the sum of two positive cubes.
2
2, 65, 72, 128, 250, 370, 468, 520, 637, 730, 793, 1125, 1241, 1332, 1458, 1853, 2000, 2205, 2745, 2960, 3528, 3744, 3925, 4097, 4160, 4394, 4608, 4706, 4825, 4941, 5096, 5256, 5840, 5913, 6344, 6641, 6984, 7202, 8125, 8192, 9000, 9325, 9386, 9477, 9773, 9826
OFFSET
1,1
LINKS
EXAMPLE
520 is in the sequence because 520 = 22^2 + 6^2 = 8^3 + 2^3.
MAPLE
s_sq:=proc(n) local i, f; f:=false:
for i while 2*i^2<=n do
if type(sqrt(n-i^2), posint) then f:=true:break fi od;
f end;
s_cb:=proc(n) local i, f; f:=false:
for i while 2*i^3<=n do
if type(surd(n-i^3, 3), posint) then f:=true:break fi od;
f end;
for n to do if s_sq(n) and s_cb(n)then prunt(n) fi od:
MATHEMATICA
n2 = 100; n3 = Ceiling[n2^(2/3)]; t2 = Flatten[Table[a^2 + b^2, {a, n2}, {b, a, n2}]]; t3 = Flatten[Table[a^3 + b^3, {a, n3}, {b, a, n3}]]; Intersection[Union[Select[t2, # <= n2^2 &]], Union[Select[t3, # <= n3^3 &]]] (* T. D. Noe, Oct 18 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Sep 30 2013
STATUS
approved