|
|
A229352
|
|
Denominators of the ordinary convergents of continued fraction [2/1,3/2,4/3,5/4,...].
|
|
3
|
|
|
1, 2, 65, 67, 132, 199, 1923, 9814, 11737, 21551, 54839, 76390, 665959, 1408308, 3482575, 11856033, 133898938, 547451785, 681350723, 1228802508, 1910153231, 3138955739, 8188064709, 19515085157, 125278575651, 144793660808, 414865897267, 559659558075
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Suppose that x(n) is a sequence of positive real numbers with divergent sum. By the Seidel Convergence Theorem, the continued fraction [x(1),x(2),x(3),...] converges.
|
|
LINKS
|
Table of n, a(n) for n=1..28.
|
|
EXAMPLE
|
[2/1, 3/2, 4/3, 5/4, ...] = 2.492459746021286... The first 5 ordinary convergents are 2, 5/2, 162/65, 167/67, 329/132.
|
|
MATHEMATICA
|
z = 500; t = Table[(n+1)/n, {n, z}]
r = FromContinuedFraction[t]; c = Convergents[r, z];
Numerator[c] (* A229351 *)
Denominator[c] (* A229352 *)
RealDigits[r, 10, 120] (* A229353 *)
|
|
CROSSREFS
|
Cf. A229348, A229351, A229353.
Sequence in context: A339305 A337651 A287649 * A229815 A273498 A003358
Adjacent sequences: A229349 A229350 A229351 * A229353 A229354 A229355
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
Clark Kimberling, Sep 21 2013
|
|
STATUS
|
approved
|
|
|
|