OFFSET
1,2
COMMENTS
Suppose that x(n) is a sequence of positive real numbers with divergent sum. By the Seidel Convergence Theorem, the continued fraction [x(1),x(2),x(3),...] converges.
The fact that F(n+1)/F(n) is the n-th convergent of a continued fraction (specifically, of the golden ratio) exemplifies a certain function f of a positive real variable x: let p(i)/q(i), for i >=0, be the convergents to x; then f(x) is the number [p(0)/q(0), p(1)/q(1), p(2)/q(2), ... ]. For x = golden ratio, f(x) = 1.398598..., f(f(x)) = 1.4903397..., f(f(f(x))) = 1.4995061.... Let L(x) = lim(f(n,x)), where f(0,x) = x, f(1,x) = f(x), and f(n,x) = f(f(n-1,x)). It appears that L(golden ratio) = 3/2.
FORMULA
[1, [1,1], [1,1,1], [1,1,1,1], ... ]. (Here, as in the Name and Example sections, square brackets indicate continued fractions.)
EXAMPLE
[1, 2/1, 3/2, 5/3, 8/5,...] = [1,2,1,1,27,1,16,670,9,3,2,1,13,1,4,1,1,1...] = 1.3985985... The first 5 ordinary convergents are 1, 3/2, 4/3, 7/5, 193/138.
MATHEMATICA
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Sep 21 2013
STATUS
approved