The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229347 a(1) = 1, for n > 1 a(n) = n*2^(omega(n)-1) where omega is A001221. 1
 1, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 24, 13, 28, 30, 16, 17, 36, 19, 40, 42, 44, 23, 48, 25, 52, 27, 56, 29, 120, 31, 32, 66, 68, 70, 72, 37, 76, 78, 80, 41, 168, 43, 88, 90, 92, 47, 96, 49, 100, 102, 104, 53, 108, 110, 112, 114, 116, 59, 240, 61, 124, 126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If n, m > 1 and gcd(m,n) = 1 then a(n*m) = 2*a(n)*a(m). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA For this sequence but with a(1)=0, Dirichlet g.f.: zeta(s-1)*primezeta(s-1) where primezeta(s) is Sum_{prime p} p^(-s). - Benedict W. J. Irwin, Jul 14 2018 [This g.f. is incorrect. With a(1)=0, Sum_{k>=1} a(k)/k^3 = 0.75, but zeta(2)*primezeta(2) = 0.74391718786976797493... - Michael Shamos, Mar 22 2023] For n > 1, Dirichlet g.f. for 2*a(n) is zeta(s-1)^2/zeta(2*s-2). - Vaclav Kotesovec, Jan 10 2024 Sum_{k=1..n} a(k) ~ 3*n^2/Pi^2 * (log(n)/2 + gamma - 1/4 - 6*zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 23 2023 For n>1, a(n) = abs(A298473)/2. - Vaclav Kotesovec, Jan 10 2024 MATHEMATICA h[n_] := 2^(Length[FactorInteger[n]] - 1)*n; Array[h, 100] Join[{1}, Table[n*2^(PrimeNu[n]-1), {n, 2, 70}]] (* Harvey P. Dale, Mar 13 2015 *) PROG (PARI) a(n)=n<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 18:12 EDT 2024. Contains 372840 sequences. (Running on oeis4.)