|
|
A070342
|
|
a(n) = 3^n mod 19.
|
|
4
|
|
|
1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, -1, 1).
|
|
FORMULA
|
From R. J. Mathar, Apr 13 2010: (Start)
a(n)= a(n-1) - a(n-9) + a(n-10).
G.f.: (1+2*x+6*x^2-x^3-3*x^4+10*x^5-8*x^6-5*x^7+4*x^8+13*x^9)/ ((1-x) * (1+x) * (x^2 -x+1) * (x^6-x^3+1)). (End)
a(n) = a(n-18). - G. C. Greubel, Mar 12 2016
|
|
MATHEMATICA
|
PowerMod[3, Range[0, 50], 19] (* G. C. Greubel, Mar 12 2016 *)
|
|
PROG
|
(Sage) [power_mod(3, n, 19)for n in range(0, 75)] # Zerinvary Lajos, Nov 25 2009
(PARI) a(n)=lift(Mod(3, 19)^n) \\ Charles R Greathouse IV, Mar 22 2016
|
|
CROSSREFS
|
Sequence in context: A199052 A021255 A229350 * A125125 A021719 A200346
Adjacent sequences: A070339 A070340 A070341 * A070343 A070344 A070345
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, May 12 2002
|
|
STATUS
|
approved
|
|
|
|