Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 07 2019 12:18:23
%S 1,3,9,8,5,15,7,2,6,18,16,10,11,14,4,12,17,13,1,3,9,8,5,15,7,2,6,18,
%T 16,10,11,14,4,12,17,13,1,3,9,8,5,15,7,2,6,18,16,10,11,14,4,12,17,13,
%U 1,3,9,8,5,15,7,2,6,18,16,10,11,14,4,12,17,13,1,3,9
%N a(n) = 3^n mod 19.
%H G. C. Greubel, <a href="/A070342/b070342.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, -1, 1).
%F From _R. J. Mathar_, Apr 13 2010: (Start)
%F a(n)= a(n-1) - a(n-9) + a(n-10).
%F G.f.: (1+2*x+6*x^2-x^3-3*x^4+10*x^5-8*x^6-5*x^7+4*x^8+13*x^9)/ ((1-x) * (1+x) * (x^2 -x+1) * (x^6-x^3+1)). (End)
%F a(n) = a(n-18). - _G. C. Greubel_, Mar 12 2016
%t PowerMod[3, Range[0, 50], 19] (* _G. C. Greubel_, Mar 12 2016 *)
%o (Sage) [power_mod(3,n,19)for n in range(0, 75)] # _Zerinvary Lajos_, Nov 25 2009
%o (PARI) a(n)=lift(Mod(3,19)^n) \\ _Charles R Greathouse IV_, Mar 22 2016
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, May 12 2002