|
|
A200346
|
|
Decimal expansion of least x>0 satisfying x^2+2x+1=tan(x).
|
|
2
|
|
|
1, 3, 9, 8, 7, 1, 8, 4, 7, 5, 9, 7, 1, 1, 1, 4, 8, 0, 4, 5, 0, 6, 7, 2, 5, 2, 5, 7, 2, 2, 8, 0, 9, 9, 4, 9, 8, 1, 7, 4, 9, 0, 9, 2, 2, 8, 3, 8, 8, 0, 5, 5, 0, 4, 0, 7, 4, 4, 2, 1, 2, 8, 2, 8, 7, 5, 3, 6, 0, 7, 5, 4, 4, 1, 9, 0, 1, 4, 7, 9, 0, 0, 4, 3, 4, 4, 3, 8, 6, 3, 2, 4, 8, 7, 0, 4, 8, 9, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A200338 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
|
|
EXAMPLE
|
x=1.398718475971114804506725257228099498174...
|
|
MATHEMATICA
|
a = 1; b = 2; c = 1;
f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
RealDigits[r] (* A200346 *)
|
|
CROSSREFS
|
Cf. A200338.
Sequence in context: A070342 A125125 A021719 * A351404 A199781 A193117
Adjacent sequences: A200343 A200344 A200345 * A200347 A200348 A200349
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Nov 16 2011
|
|
STATUS
|
approved
|
|
|
|