|
|
A199781
|
|
Decimal expansion of x>0 satisfying 2*x^2-4*x*cos(x)=3*sin(x).
|
|
2
|
|
|
1, 3, 9, 8, 8, 0, 6, 8, 9, 3, 8, 9, 4, 9, 0, 3, 2, 5, 9, 7, 9, 1, 2, 3, 8, 1, 1, 8, 9, 8, 3, 7, 9, 1, 3, 8, 4, 0, 2, 8, 5, 1, 9, 8, 5, 7, 0, 6, 5, 0, 4, 7, 1, 7, 1, 7, 2, 5, 2, 4, 0, 7, 5, 2, 9, 7, 8, 9, 2, 2, 8, 5, 1, 5, 2, 4, 5, 5, 8, 2, 5, 5, 9, 1, 7, 2, 4, 8, 0, 9, 4, 0, 3, 7, 0, 1, 1, 8, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
|
|
EXAMPLE
|
x=1.3988068938949032597912381189837913840285...
|
|
MATHEMATICA
|
a = 2; b = -4; c = 3;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.39, 1.40}, WorkingPrecision -> 110]
RealDigits[r] (* A199781 *)
|
|
CROSSREFS
|
Cf. A199597.
Sequence in context: A021719 A200346 A351404 * A193117 A016677 A288095
Adjacent sequences: A199778 A199779 A199780 * A199782 A199783 A199784
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Nov 10 2011
|
|
STATUS
|
approved
|
|
|
|