login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273498
Numbers that are, at the same time, the sum of: two positive squares, a positive square and a positive cube, and two positive cubes. In other words, intersection of A000404, A003325 and A055394.
2
2, 65, 72, 128, 468, 730, 793, 1241, 1332, 1458, 2000, 2745, 3528, 4097, 4160, 4608, 4825, 5096, 5840, 5913, 6344, 8125, 8192, 9000, 9325, 9928, 12168, 13357, 13498, 14824, 15626, 15633, 15689, 16354, 17640, 18369, 18737, 19721, 19773, 21953, 22681, 27792, 29449
OFFSET
1,1
COMMENTS
Numbers n such that n = x^a + y^b where x,y > 0, is soluble for all 1 < a <= b < 4.
Perfect power terms are 128, 8192, 97344, 140625, 524288, 1500625, ...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
793 is a term because 793 = 3^2 + 28^2 = 8^2 + 9^3 = 4^3 + 9^3.
PROG
(PARI) isA003325(n)=for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1))
isA000404(n) = for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
isA055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
lista(nn) = for(n=1, nn, if(isA003325(n) && isA000404(n) && isA055394(n), print1(n, ", ")));
(PARI) isA000404(n)=my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(0))); n>1 && (vecmin(f[, 1]%4)==1 || (f[1, 1]==2 && f[1, 2]%2))
isA055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
list(lim)=my(v=List(), n3, t); lim\=1; for(n=1, sqrtnint(lim-1, 3), n3=n^3; for(m=1, sqrtnint(lim-n3, 3), t=n3+m^3; if(isA000404(t) && isA055394(t), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, May 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, May 23 2016
STATUS
approved