login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303376
Numbers of the form a^6 + b^7, with integers a, b > 0.
2
2, 65, 129, 192, 730, 857, 2188, 2251, 2916, 4097, 4224, 6283, 15626, 15753, 16385, 16448, 17113, 17812, 20480, 32009, 46657, 46784, 48843, 63040, 78126, 78189, 78854, 82221, 93750, 117650, 117777, 119836, 124781, 134033, 195774, 262145, 262272, 264331, 278528, 279937
OFFSET
1,1
COMMENTS
Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.
EXAMPLE
The sequence starts with 1^6 + 1^7, 2^6 + 1^7, 1^6 + 2^7, 2^6 + 2^7, 3^6 + 1^7, 3^6 + 2^7, ...
MATHEMATICA
With[{nn=40}, Take[Union[First[#]^6 + Last[#]^7&/@Tuples[Range[nn], 2]], nn]] (* Vincenzo Librandi, Apr 25 2018 *)
PROG
(PARI) is(n, k=6, m=7)=for(b=1, sqrtnint(n-1, m), ispower(n-b^m, n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
A303376_vec(L=10^5, k=6, m=7, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ all terms up to limit L
CROSSREFS
Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Sequence in context: A229815 A273498 A003358 * A041511 A156651 A342608
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Apr 22 2018
STATUS
approved